Implementing yolov4 target detection and tracking based on nao robot

Overview

基于nao机器人实现yolov4目标检测并进行跟踪

Introduction - 介绍

本项目为yolov4算法在nao机器人上的应用。

关于YOLOv4原理请参考YOLOv4原论文
本项目主要YOLOv4框架参考Bubbliiiing博主复现的代码
原博客链接:https://blog.csdn.net/weixin_44791964/article/details/106214657
复现代码链接:https://github.com/bubbliiiing/yolov4-pytorch
nao机器人单目测距方法请参考:https://wenku.baidu.com/view/bdc7eea7482fb4daa48d4b24.html
使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件


下图为目标跟踪流程图。由于nao机器人sdk库naoqi仅支持py2.7环境,本项目需分别运行py2.7环境下的"封装跟踪.py"文件和py3.6环境下的"predict.py"文件。
该项目可以让nao机器人转头寻找水瓶目标,检测到目标后通过单目测距向目标前进,当目标距离和nao小于1.09m时,程序完成运行。 image

Requirements - 必要条件

py2.7环境

numpy==1.16.6+vanilla
opencv-python==2.4.13.7
Pillow==6.2.2
pynaoqi==2.1.4.13

tips

naoqi库为软银官方提供的nao机器人sdk
naoqi库百度云链接:链接: https://pan.baidu.com/s/1kib-Bx9BjiOXCjrIycsIAw 提取码: 5k8b


py3.6环境

pytorch和cuda版本参考Bubbliiiing博文,其他缺少环境任意版本即可。 参考环境见py3.6环境文件(仅供参考,因为包含了很多自用无关的库)

Configuration - 配置

使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件
YOLOv4环境的配置方法:
1.将训练好的只检测水瓶类的权重文件放入model_data文件夹,并替换yolo.py中的初始路径
2.把model_data文件夹下的voc_classes.txt文件中物品类别改为只有bottle
3.更多问题详见Bubbliiiing博文。

本项目跟踪的只有水瓶类,所以训练时只提取了VOC2007数据集中的水瓶类别
只有水瓶类别的VOC2007数据集百度云链接:链接: https://pan.baidu.com/s/1d11f3lm2BvPtwxXuRYZ5HQ 提取码: w2kn
训练好的只检测水瓶类的权重百度云链接: 链接: https://pan.baidu.com/s/1Qt__j8RAOZeRbY8BjXitpA 提取码: 5u2b

Usage - 用法

配置好py3.6和py2.7环境后。先运行"封装跟踪.py"文件,再运行"predict.py"文件。
检测到的图片信息可见于img文件夹

Changelog - 更新日志

License - 版权信息

本项目证书为GPL-3.0 License,详见GPL-3.0 License.md

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022