Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Overview

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

overview

This material is supplementray code for paper accepted in ICDAR 2021

  1. We highly recommend to use docker image because our model contains custom operation which depends on framework and cuda version.
  2. We provide trained model for ICDAR 2017, 2013 which is in final_checkpoint_ch8 and for ICDAR 2015 which is in final_checkpoint_ch4
  3. This code is mainly focused on inference. To train our model, training gpu like V100 is needed. please check our paper in detail.

REQUIREMENT

  1. Nvidia-docker
  2. Tensorflow 1.14
  3. Miminum GPU requirement : NVIDIA GTX 1080TI

INSTALLATION

  • Make docker image and container
docker build --tag rbimage ./dockerfile
docker run --runtime=nvidia --name rbcontainer -v /rotated-box-is-back-path:/rotated-box-is-back -i -t rbimage /bin/bash
  • build custom operations in container
cd /rotated-box-is-back/nms 
cmake ./
make
./shell.sh

SAMPLE IMAGE INFERENCE

cd /rotated-box-is-back/
python viz.py --test_data_path=./sample --checkpoint_path=./final_checkpoint_ch8 --output_dir=./sample_result  --thres 0.6 --min_size=1600 --max_size=2000

ICDAR 2017 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2017-testset-folder path.
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch8 --output_dir=./ic17  --thres 0.6 --min_size=1600 --max_size=2000

ICDAR 2015 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2015-testset-folder path.
  2. To converting evalutation format. Convert result text file like below
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch4 --output_dir=./ic15  --thres 0.7 --min_size=1100 --max_size=2000
python text_postprocessing.py -i=./ic15/ -o=./ic15_format/ -e True

ICDAR 2013 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2013-testset-folder path.
  2. To converting evalutation format. Convert result text file like below
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch8 --output_dir=./ic13  --thres 0.55 --min_size=700 --max_size=900
python text_postprocessing.py -i=./ic13/ -o=./ic13_format/ -e True -m rec

EVALUATION TABLE

IC13 IC15 IC17
P R F P R F P R F
95.9 89.1 92.4 89.7 84.2 86.9 83.4 68.2 75.0

TRAINING

  1. It can be trained below command line
python train_refine_estimator.py --input_size=1024 --batch_size=2 --checkpoint_path=./finetuning --training_data_path=your-image-path --training_gt_path=your-gt-path  --learning_rate=0.00001 --max_epochs=500  --save_summary_steps=1000 --warmup_path=./final_checkpoint_ch8

ACKNOWLEDGEMENT

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 1711125972, Audio-Visual Perception for Autonomous Rescue Drones).

CITATION

If you found it is helpfull for your research, please cite:

Lee J., Lee J., Yang C., Lee Y., Lee J. (2021) Rotated Box Is Back: An Accurate Box Proposal Network for Scene Text Detection. In: Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science, vol 12824. Springer, Cham. https://doi.org/10.1007/978-3-030-86337-1_4

Owner
NCSOFT
NCSOFT Open Sources
NCSOFT
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022