PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

Overview

PyTorch-Style-Transfer

This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included by ModelDepot. We also provide Torch implementation and MXNet implementation.

Tabe of content

MSG-Net

Multi-style Generative Network for Real-time Transfer [arXiv] [project]
Hang Zhang, Kristin Dana
@article{zhang2017multistyle,
	title={Multi-style Generative Network for Real-time Transfer},
	author={Zhang, Hang and Dana, Kristin},
	journal={arXiv preprint arXiv:1703.06953},
	year={2017}
}

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model
    git clone [email protected]:zhanghang1989/PyTorch-Style-Transfer.git
    cd PyTorch-Style-Transfer/experiments
    bash models/download_model.sh
  2. Camera Demo
    python camera_demo.py demo --model models/21styles.model
  3. Test the model
    python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024
  • If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:

    • --content-image: path to content image you want to stylize.
    • --style-image: path to style image (typically covered during the training).
    • --model: path to the pre-trained model to be used for stylizing the image.
    • --output-image: path for saving the output image.
    • --content-size: the content image size to test on.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train Your Own MSG-Net Model

  1. Download the COCO dataset
    bash dataset/download_dataset.sh
  2. Train the model
    python main.py train --epochs 4
  • If you would like to customize styles, set --style-folder path/to/your/styles. More options:
    • --style-folder: path to the folder style images.
    • --vgg-model-dir: path to folder where the vgg model will be downloaded.
    • --save-model-dir: path to folder where trained model will be saved.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Neural Style

Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg
  • --content-image: path to content image.
  • --style-image: path to style image.
  • --output-image: path for saving the output image.
  • --content-size: the content image size to test on.
  • --style-size: the style image size to test on.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Acknowledgement

The code benefits from outstanding prior work and their implementations including:

Comments
  • training new model

    training new model

    @zhanghang1989 I trained a model with three style images. Now, I see eight .model files. Can you please tell me which .model file to use OR how to integrate them to single model file.

    Thanks Akash

    opened by akashdexati 7
  • Unable to resume training

    Unable to resume training

    Hey,

    So I started training a model, but seeing how long it was going to take I wanted to double check I could successfully resume training.

    I ran: python3 main.py train --epochs 4 --style-folder images/xmas-styles/ --save-model-dir trained_models/ until it generated the first checkpoint, then I ran python3 main.py train --epochs 4 --style-folder images/xmas-styles/ --save-model-dir trained_models/ --resume trained_models/Epoch_0iters_8000_Sat_Dec__9_18\:10\:43_2017_1.0_5.0.model and waiting for the first feedback report, which was Sat Dec 9 18:17:09 2017 Epoch 1: [2000/123287] content: 254020.831359 style: 1666218.549250 total: 1920239.380609 so it appeared to not have resumed at all.

    Also slight side question... Say I train with --epochs 4 til I get final model... If I were to use the last checkpoint before final to resume, but set --epochs 5 or higher, would that work correctly and just keep going through to 5 epochs before generating another final, and have no issues etc?

    opened by pingu2k4 6
  • Temporal coherence?

    Temporal coherence?

    Have you tried some technique for temporal coherence? If not, would you mind if I ask which one would you recommend or would like to try.

    Keep up the good work.

    opened by rraallvv 3
  • vgg16.t7 unhashable type: 'numpy.ndarray'

    vgg16.t7 unhashable type: 'numpy.ndarray'

    It's been a while since the last vgg16 issue i found on this "Issues".

    So i download the vgg16.t7 from the paper quoted in this github. And i run this command "python main.py train --epochs 4 --style-folder images/ownstyles --save-model-dir own_models --cuda 1" i have put the vgg16.t7 into models folder, it's been detected correctly. However, the following problem happened.

    Traceback (most recent call last):
      File "main.py", line 295, in <module>
        main()
      File "main.py", line 41, in main
        train(args)
      File "main.py", line 135, in train
        utils.init_vgg16(args.vgg_model_dir)
      File "C:\Users\user\Prepwork\Cap Project\PyTorch-Multi-Style-Transfer\experiments\utils.py", line 100, in init_vgg16
        vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7'))
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 424, in load
        return reader.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj
        obj._obj = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 385, in read_obj
        k = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 386, in read_obj
        v = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj
        obj._obj = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 387, in read_obj
        obj[k] = v
    TypeError: unhashable type: 'numpy.ndarray'
    

    Is there anyway i can fix this? i found in other thread they said replace with another one, but i could not find another one other than from stanford.

    Thanks!

    opened by fuddyduddy 2
  • Fix colab notebook

    Fix colab notebook

    Hi. Made some changes to notebook:

    • fixed RuntimeError #21, #32, that was fixed in #31 and #37, but not for msgnet.ipynb;
    • removed unused import torch.nn.functional;
    • prettified according to pep8;
    • changed os.system('wget ...') to direct calling !wget ... without importing os module.

    Tested in colab (run all), the notebook works as expected without errors.

    opened by amrzv 1
  • Establish Docker directory

    Establish Docker directory

    What: Establishes a Docker directory with Dockerfile and run script

    Why: The original repo was written for an outdated version of PyTorch, which makes it hard to run on modern systems without conflicting with updated versions of the dependencies.

    Build the container with

    cd Docker
    docker build -t style-transfer .
    
    opened by ss32 1
  • Fix compatibility issues with torch==1.1.0

    Fix compatibility issues with torch==1.1.0

    RuntimeError: Error(s) in loading state_dict for Net:
    	Unexpected running stats buffer(s) "model1.1.running_mean" and "model1.1.running_var" for InstanceNorm2d with track_running_stats=False. If state_dict is a checkpoint saved before 0.4.0, this may be expected because InstanceNorm2d does not track running stats by default since 0.4.0. Please remove these keys from state_dict. If the running stats are actually needed, instead set track_running_stats=True in InstanceNorm2d to enable them. See the documentation of InstanceNorm2d for details.
    
    opened by jianchao-li 1
  • set default values

    set default values

    Hi,

    I try run the camera.py with the arguments discribed in the docs , but fail because inside the code dont have values for args.demo_size and img.copy too Whats the default values for set these variables?

    Thank you

    opened by gledsoul 1
  • Super Slow at optim on linux Mint

    Super Slow at optim on linux Mint

    Have this on a fresh install of linux Mint. I'm running the example, 'python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg' and its taking FOREVER to do anything. I used to have it working at a decent speed on Ubuntu on the same hardware.

    When inspecting GPU and CPU usage, I see it start off with minimal GPU usage, and huge CPU usage. it slowly increases GPU usage over time until it has enough and then completes the rest in around the same time as before. As an example, it takes around 8 minutes to figure out that there isn't enough VRAM for the selected image size, whereas previously on my Ubuntu installation that would take a matter of seconds. Any idea why it would take so much longer on Mint? And what I can do to remedy this?

    opened by pingu2k4 1
  • "TypeError: 'torch.FloatTensor' object is not callable" running demo on CPU

    Sorry if I'm missing something, I'm unfamiliar with PyTorch. I'm running the demo on CPU on a Mac and getting the following error:

      File "camera_demo.py", line 93, in <module>
        main()
      File "camera_demo.py", line 90, in main
        run_demo(args, mirror=True)
      File "camera_demo.py", line 60, in run_demo
        simg = style_v.data().numpy()
    TypeError: 'torch.FloatTensor' object is not callable
    

    Thanks.

    opened by Carmezim 1
  • optim with normal RAM?

    optim with normal RAM?

    Hi,

    So I spent around 24 hours so far training a model on my style images, got the results out by using the model on eval and so far they're not great. When I use the optim function with the styles however the results are pretty decent, however I am limited by my VRAM which is 6GB as to what size images I can output. Having a lot more RAM available, I was hoping I could do pretty decently sized images, but it seems that I can only get much larger images with eval. Does eval use normal RAM instead of VRAM?

    I will continue training my model so that I can use eval in the future, whether I can do larger images with optim or not, but no idea how much more training is required to make it anywhere near a respectable result.

    What sort of overall loss value should I be aiming for? Does the number of style images make a difference to what I should expect?

    opened by pingu2k4 1
  • Error Training TypeError: 'NoneType' object is not callable

    Error Training TypeError: 'NoneType' object is not callable

    I was able to get my environment setup successfully to run eval; however, now, trying train I'm running into an issue. Not sure if it's a syntax issues or if something else is going on? You help is greatly appreciated.

    
    #!/bin/bash
    #SBATCH --job-name=train-pytorch
    #SBATCH --mail-type=END,FAIL
    #SBATCH [email protected]
    #SBATCH --ntasks=1
    #SBATCH --time=00:10:00
    #SBATCH --mem=8000
    #SBATCH --gres=gpu:p100:2
    #SBATCH --cpus-per-task=6
    #SBATCH --output=%x_%j.log
    #SBATCH --error=%x_%j.err
    
    source ~/scratch/moldach/PyTorch-Style-Transfer/experiments/venv/bin/activate
    
    python main.py train \
      --epochs 4 \
      --style-folder /scratch/moldach/PyTorch-Style-Transfer/experiments/images/9styles \
      --vgg-model-dir vgg-model/ \
      --save-model-dir checkpoint/
    
    
    /scratch/moldach/first-order-model/venv/lib/python3.6/site-packages/torchvision/transforms/transforms.py:188: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
      "please use transforms.Resize instead.")
    Traceback (most recent call last):
      File "main.py", line 295, in <module>
        main()
      File "main.py", line 41, in main
        train(args)
      File "main.py", line 135, in train
        utils.init_vgg16(args.vgg_model_dir)
      File "/scratch/moldach/PyTorch-Style-Transfer/experiments/utils.py", line 102, in init_vgg16
        for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()):
    TypeError: 'NoneType' object is not callable
    
    

    pip freeze:

    $ pip freeze
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/nix/avx2
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/nix/generic
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/generic
    cffi==1.11.5
    cloudpickle==0.5.3
    cycler==0.10.0
    dask==0.18.2
    dataclasses==0.8
    decorator==4.4.2
    future==0.18.2
    imageio==2.9.0
    imageio-ffmpeg==0.4.3
    kiwisolver==1.3.1
    matplotlib==3.3.4
    networkx==2.5
    numpy==1.19.1
    pandas==0.23.4
    Pillow==8.1.2
    pycparser==2.18
    pygit==0.1
    pyparsing==2.4.7
    python-dateutil==2.8.1
    pytz==2018.5
    PyWavelets==1.1.1
    PyYAML==5.1
    scikit-image==0.17.2
    scikit-learn==0.19.2
    scipy==1.4.1
    six==1.15.0
    tifffile==2020.9.3
    toolz==0.9.0
    torch==1.7.0
    torchfile==0.1.0
    torchvision==0.2.1
    tqdm==4.24.0
    typing-extensions==3.7.4.3
    
    opened by moldach 4
  • Color produced by eval doesn't match demo

    Color produced by eval doesn't match demo

    Hi ! Thanks for sharing the code. I've ran the eval program using the defaults provided and I noticed the color tends to be much dimmer than what is shown on the homepage here. Is there something that I am missing? The command I used was

    python main.py --style-image ./images/21styles/udnie.jpg --content-image ./images/content/venice-boat.jpg

    out

    opened by clarng 1
  • struct.error: unpack requires a buffer of 4 bytes

    struct.error: unpack requires a buffer of 4 bytes

    Dear author, Thank you so much for sharing a useful code. I able to run your evaluation code, but face the following error during runing of training code: File "main.py", line 41, in main train(args) File "main.py", line 135, in train utils.init_vgg16(args.vgg_model_dir) File "/home2/st118370/models/PyTorch-Multi-Style-Transfer/experiments/utils.py", line 100, in init_vgg16 vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7')) File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 424, in load return reader.read_obj() File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 310, in read_obj typeidx = self.read_int() File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 277, in read_int return self._read('i')[0] File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 271, in _read return struct.unpack(fmt, self.f.read(sz)) struct.error: unpack requires a buffer of 4 bytes

    how can i resolve this problem? kindly guide. thanks

    opened by MFarooqAit 1
  • vgg16.t7  unhashable type: 'numpy.ndarray

    vgg16.t7 unhashable type: 'numpy.ndarray

    hi

    I have put the vgg16.t7 into models folder, it's been detected correctly. However, the following problem happened.

    Traceback (most recent call last): File "main.py", line 295, in main() File "main.py", line 41, in main train(args) File "main.py", line 135, in train utils.init_vgg16(args.vgg_model_dir) File "C:\Users\user\Prepwork\Cap Project\PyTorch-Multi-Style-Transfer\experiments\utils.py", line 100, in init_vgg16 vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7')) File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 424, in load return reader.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj obj._obj = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 385, in read_obj k = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 386, in read_obj v = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj obj._obj = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 387, in read_obj obj[k] = v TypeError: unhashable type: 'numpy.ndarray'

    It does't work for pytorch-1.0.0 and 1.4.0, and giving the same error, how to deal with it? thanks !

    opened by Gavin-Evans 13
  • Different brush stroke size

    Different brush stroke size

    In your paper you wrote about the ability to train the model with different sizes of the style images to later get control over the brush stroke size. Did you implement this in either the pytorch or torch implementation? Greetings and keep up the great work

    opened by lpiribauer 0
Releases(v0.1)
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022