Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

Overview
logo

KML: A Machine Learning Framework for Operating Systems & Storage Systems

CircleCI codecov

Storage systems and their OS components are designed to accommodate a wide variety of applications and dynamic workloads. Storage components inside the OS contain various heuristic algorithms to provide high performance and adaptability for different workloads. These heuristics may be tunable via parameters, and some system calls allow users to optimize their system performance. These parameters are often predetermined based on experiments with limited applications and hardware. Thus, storage systems often run with these predetermined and possibly suboptimal values. Tuning these parameters manually is impractical: one needs an adaptive, intelligent system to handle dynamic and complex workloads. Machine learning (ML) techniques are capable of recognizing patterns, abstracting them, and making predictions on new data. ML can be a key component to optimize and adapt storage systems. We propose KML, an ML framework for operating systems & storage systems. We implemented a prototype and demonstrated its capabilities on the well-known problem of tuning optimal readahead values. Our results show that KML has a small memory footprint, introduces negligible overhead, and yet enhances throughput by as much as 2.3×.

For more information on the KML project, please see our papers

KML is under development by Ibrahim Umit Akgun of the File Systems and Storage Lab (FSL) at Stony Brook University under Professor Erez Zadok.

Table of Contents

Setup

Clone KML

# SSH
git clone --recurse-submodules [email protected]:sbu-fsl/kernel-ml.git

# HTTPS
git clone --recurse-submodules https://github.com/sbu-fsl/kernel-ml.git

Build Dependencies

KML depends on the following third-party repositories:

# Create and enter a directory for dependencies
mkdir dependencies
cd dependencies

# Clone repositories
git clone https://github.com/google/benchmark.git
git clone https://github.com/google/googletest.git

# Build google/benchmark
cd benchmark
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make
sudo make install

# Build google/googletest
cd ../googletest
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make
sudo make install
cd ../..

Install KML Linux Kernel Modifications

KML requires Linux kernel modifications to function. We recommend allocating at least 25 GiB of disk space before beginning the installation process.

  1. Navigate to the kernel-ml/kernel-ml-linux directory. This repository was recursively cloned during setup
    cd kernel-ml-linux
  2. Install the following packages
    git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison
    
  3. Install the modified kernel as normal. No changes are required for make menuconfig
    cp /boot/config-$(uname -r) .config
    make menuconfig
    make -j$(nproc)
    sudo make modules_install -j$(nproc)
    sudo make install -j$(nproc)
  4. Restart your machine
    sudo reboot
    
  5. Confirm that you now have Linux version 4.19.51+ installed
    uname -a

Specify Kernel Header Location

Edit kernel-ml/cmake/FindKernelHeaders.cmake to specify the absolute path to the aforementioned kernel-ml/kernel-ml-linux directory. For example, if kernel-ml-linux lives in /home/kernel-ml/kernel-ml-linux:

...

# Find the headers
find_path(KERNELHEADERS_DIR
        include/linux/user.h
        PATHS /home/kernel-ml/kernel-ml-linux
)

...

Build KML

# Create a build directory for KML
mkdir build
cd build 
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-Werror" ..
make

Double Check

In order to check everything is OK, we can run tests and benchmarks.

cd build
ctest --verbose

Design

kernel-design

Example

Citing KML

To cite this repository:

@TECHREPORT{umit21kml-tr,
  AUTHOR =       "Ibrahim Umit Akgun and Ali Selman Aydin and Aadil Shaikh and Lukas Velikov and Andrew Burford and Michael McNeill and Michael Arkhangelskiy and Erez Zadok",
  TITLE =        "KML: Using Machine Learning to Improve Storage Systems",
  INSTITUTION =  "Computer Science Department, Stony Brook University",
  YEAR =         "2021",
  MONTH =        "Nov",
  NUMBER =       "FSL-21-02",
}
@INPROCEEDINGS{hotstorage21kml,
  TITLE =        "A Machine Learning Framework to Improve Storage System Performance",
  AUTHOR =       "Ibrahim 'Umit' Akgun and Ali Selman Aydin and Aadil Shaikh and Lukas Velikov and Erez Zadok",
  NOTE =         "To appear",
  BOOKTITLE =    "HotStorage '21: Proceedings of the 13th ACM Workshop on Hot Topics in Storage",
  MONTH =        "July",
  YEAR =         "2021",
  PUBLISHER =    "ACM",
  ADDRESS =      "Virtual",
  KEY =          "HOTSTORAGE 2021",
}
You might also like...
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

⚡ Fast • 🪶 Lightweight • 0️⃣ Dependency • 🔌 Pluggable • 😈 TLS interception • 🔒 DNS-over-HTTPS • 🔥 Poor Man's VPN • ⏪ Reverse & ⏩ Forward • 👮🏿 Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

Exploring Image Deblurring via Blur Kernel Space (CVPR'21)
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Releases(v0.0.1)
Owner
File systems and Storage Lab (FSL)
Researchers and students in the FSL group perform research in operating systems with focus on file systems, storage, security, and networking.
File systems and Storage Lab (FSL)
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022