Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

Overview
logo

KML: A Machine Learning Framework for Operating Systems & Storage Systems

CircleCI codecov

Storage systems and their OS components are designed to accommodate a wide variety of applications and dynamic workloads. Storage components inside the OS contain various heuristic algorithms to provide high performance and adaptability for different workloads. These heuristics may be tunable via parameters, and some system calls allow users to optimize their system performance. These parameters are often predetermined based on experiments with limited applications and hardware. Thus, storage systems often run with these predetermined and possibly suboptimal values. Tuning these parameters manually is impractical: one needs an adaptive, intelligent system to handle dynamic and complex workloads. Machine learning (ML) techniques are capable of recognizing patterns, abstracting them, and making predictions on new data. ML can be a key component to optimize and adapt storage systems. We propose KML, an ML framework for operating systems & storage systems. We implemented a prototype and demonstrated its capabilities on the well-known problem of tuning optimal readahead values. Our results show that KML has a small memory footprint, introduces negligible overhead, and yet enhances throughput by as much as 2.3×.

For more information on the KML project, please see our papers

KML is under development by Ibrahim Umit Akgun of the File Systems and Storage Lab (FSL) at Stony Brook University under Professor Erez Zadok.

Table of Contents

Setup

Clone KML

# SSH
git clone --recurse-submodules [email protected]:sbu-fsl/kernel-ml.git

# HTTPS
git clone --recurse-submodules https://github.com/sbu-fsl/kernel-ml.git

Build Dependencies

KML depends on the following third-party repositories:

# Create and enter a directory for dependencies
mkdir dependencies
cd dependencies

# Clone repositories
git clone https://github.com/google/benchmark.git
git clone https://github.com/google/googletest.git

# Build google/benchmark
cd benchmark
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make
sudo make install

# Build google/googletest
cd ../googletest
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ../
make
sudo make install
cd ../..

Install KML Linux Kernel Modifications

KML requires Linux kernel modifications to function. We recommend allocating at least 25 GiB of disk space before beginning the installation process.

  1. Navigate to the kernel-ml/kernel-ml-linux directory. This repository was recursively cloned during setup
    cd kernel-ml-linux
  2. Install the following packages
    git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison
    
  3. Install the modified kernel as normal. No changes are required for make menuconfig
    cp /boot/config-$(uname -r) .config
    make menuconfig
    make -j$(nproc)
    sudo make modules_install -j$(nproc)
    sudo make install -j$(nproc)
  4. Restart your machine
    sudo reboot
    
  5. Confirm that you now have Linux version 4.19.51+ installed
    uname -a

Specify Kernel Header Location

Edit kernel-ml/cmake/FindKernelHeaders.cmake to specify the absolute path to the aforementioned kernel-ml/kernel-ml-linux directory. For example, if kernel-ml-linux lives in /home/kernel-ml/kernel-ml-linux:

...

# Find the headers
find_path(KERNELHEADERS_DIR
        include/linux/user.h
        PATHS /home/kernel-ml/kernel-ml-linux
)

...

Build KML

# Create a build directory for KML
mkdir build
cd build 
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS="-Werror" ..
make

Double Check

In order to check everything is OK, we can run tests and benchmarks.

cd build
ctest --verbose

Design

kernel-design

Example

Citing KML

To cite this repository:

@TECHREPORT{umit21kml-tr,
  AUTHOR =       "Ibrahim Umit Akgun and Ali Selman Aydin and Aadil Shaikh and Lukas Velikov and Andrew Burford and Michael McNeill and Michael Arkhangelskiy and Erez Zadok",
  TITLE =        "KML: Using Machine Learning to Improve Storage Systems",
  INSTITUTION =  "Computer Science Department, Stony Brook University",
  YEAR =         "2021",
  MONTH =        "Nov",
  NUMBER =       "FSL-21-02",
}
@INPROCEEDINGS{hotstorage21kml,
  TITLE =        "A Machine Learning Framework to Improve Storage System Performance",
  AUTHOR =       "Ibrahim 'Umit' Akgun and Ali Selman Aydin and Aadil Shaikh and Lukas Velikov and Erez Zadok",
  NOTE =         "To appear",
  BOOKTITLE =    "HotStorage '21: Proceedings of the 13th ACM Workshop on Hot Topics in Storage",
  MONTH =        "July",
  YEAR =         "2021",
  PUBLISHER =    "ACM",
  ADDRESS =      "Virtual",
  KEY =          "HOTSTORAGE 2021",
}
You might also like...
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

⚡ Fast • 🪶 Lightweight • 0️⃣ Dependency • 🔌 Pluggable • 😈 TLS interception • 🔒 DNS-over-HTTPS • 🔥 Poor Man's VPN • ⏪ Reverse & ⏩ Forward • 👮🏿 Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

Exploring Image Deblurring via Blur Kernel Space (CVPR'21)
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Releases(v0.0.1)
Owner
File systems and Storage Lab (FSL)
Researchers and students in the FSL group perform research in operating systems with focus on file systems, storage, security, and networking.
File systems and Storage Lab (FSL)
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022