QMagFace: Simple and Accurate Quality-Aware Face Recognition

Related tags

Deep LearningQMagFace
Overview

Quality-Aware Face Recognition

26.11.2021 start readme

QMagFace: Simple and Accurate Quality-Aware Face Recognition

Table of Contents

Abstract

Face recognition systems have to deal with large variabilities (such as different poses, illuminations, and expressions) that might lead to incorrect matching decisions. These variabilities can be measured in terms of face image quality which is defined over the utility of a sample for recognition. Previous works on face recognition either do not employ this valuable information or make use of noninherently fit quality estimates. In this work, we propose a simple and effective face recognition solution (QMag- Face) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes modelspecific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced quality-awareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as crosspose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.97% on XQLFQ, and 98.74% on CFP-FP.

Results

The proposed approach is analysed in three steps. First, we report the performance of QMagFace on six face recognition benchmarks against ten recent state-of-the-art methods in image- and video-based recognition tasks to provide a comprehensive comparison with state-of-the-art. Second, we investigate the face recognition performance of QMagFace over a wide FMR range to show its suitability for a wide variety of applications and to demonstrate that the quality-aware comparison score constantly enhances the recognition performance. Third, we analyse the optimal quality weight over a wide threshold range to demonstrate the robustness of the training process and the generalizability of the proposed approach.

In the following, we will only show some results. For more details and dicussions, please take a look at the paper.

Performance on face recognition benchmarks - The face recognition performance on the four benchmarks is reported in terms of benchmark accuracy (%). The highest performance is marked bold. The proposed approach, QMagFace-100, achieves state-of-the-art face recognition performance, especially in cross-age (AgeDB), cross-pose (CFP-FP), and cross-quality (XQLFW) scenarios. Since the FIQ captures these challenging conditions and the quality values represent the utility of the images for our specific network, the proposed quality-aware comparison score can specifically address the circumstance and their effect on the network. Consequently, it performs highly accurate in the cross-age, cross-pose, and cross-quality scenarios and achieves state-of-the-art performances.

Face recognition performance over a wide range of FMRs - The face recognition performance is reported in terms of FNMR [%] over a wide range of FMRs. The MagFace and the proposed QMagFace approach are compared for three backbone architectures on three databases. The better values between both approaches are highlighted in bold. In general, the proposed quality-aware solutions constantly improve the performance, often by a large margin. This is especially true for QMagFace based on the iResNet-100 backbone.

Robustness analysis - The optimal quality weight for different decision thresholds is reported on four databases. Training on different databases lead to similar linear solutions for the quality-weighting function. The results demonstrate that (a) the choice of a linear function is justified and (b) that the learned models have a high generalizability since the quality-weighting function trained on one database is very similar to the optimal functions of the others.

Installation

To be done soon

Citing

If you use this code, please cite the following paper.

@article{QMagFace,
  author    = {Philipp Terh{\"{o}}rst and
               Malte Ihlefeld and
               Marco Huber and
               Naser Damer and
               Florian Kirchbuchner and
               Kiran Raja and
               Arjan Kuijper},
  title     = {{QMagFace}: Simple and Accurate Quality-Aware Face Recognition},
  journal   = {CoRR},
  volume    = {abs/2111.13475},
  year      = {2021},
  url       = {https://arxiv.org/abs/2111.13475},
  eprinttype = {arXiv},
  eprint    = {2111.13475},
}

If you make use of our implementation based on MagFace, please additionally cite the original MagFace module.

Acknowledgement

This research work has been funded by the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE. Portions of the research in this paper use the FERET database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office. This work was carried out during the tenure of an ERCIM ’Alain Bensoussan‘ Fellowship Programme.

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Philipp Terhörst
Philipp Terhörst
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022