Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Overview

Yolo-FastestV2DOI

image

  • Simple, fast, compact, easy to transplant
  • Less resource occupation, excellent single-core performance, lower power consumption
  • Faster and smaller:Trade 1% loss of accuracy for 40% increase in inference speed, reducing the amount of parameters by 25%
  • Fast training speed, low computing power requirements, training only requires 3GB video memory, gtx1660ti training COCO 1 epoch only takes 7 minutes

Evaluating indicator/Benchmark

Network COCO mAP(0.5) Resolution Run Time(4xCore) Run Time(1xCore) FLOPs(G) Params(M)
Yolo-FastestV2 23.56 % 352X352 3.23 ms 4.5 ms 0.238 0.25M
Yolo-FastestV1.1 24.40 % 320X320 5.59 ms 7.52 ms 0.252 0.35M
Yolov4-Tiny 40.2% 416X416 23.67ms 40.14ms 6.9 5.77M
  • Test platform Mi 11 Snapdragon 888 CPU,Based on NCNN
  • Reasons for the increase in inference speed: optimization of model memory access
  • Suitable for hardware with extremely tight computing resources

How to use

Dependent installation

  • PIP
pip3 install -r requirements.txt

Test

  • Picture test
    python3 test.py --data data/coco.data --weights modelzoo/coco2017-epoch-0.235624ap-model.pth --img img/dog.jpg
    

image

How to train

Building data sets(The dataset is constructed in the same way as darknet yolo)

  • The format of the data set is the same as that of Darknet Yolo, Each image corresponds to a .txt label file. The label format is also based on Darknet Yolo's data set label format: "category cx cy wh", where category is the category subscript, cx, cy are the coordinates of the center point of the normalized label box, and w, h are the normalized label box The width and height, .txt label file content example as follows:

    11 0.344192634561 0.611 0.416430594901 0.262
    14 0.509915014164 0.51 0.974504249292 0.972
    
  • The image and its corresponding label file have the same name and are stored in the same directory. The data file structure is as follows:

    .
    ├── train
    │   ├── 000001.jpg
    │   ├── 000001.txt
    │   ├── 000002.jpg
    │   ├── 000002.txt
    │   ├── 000003.jpg
    │   └── 000003.txt
    └── val
        ├── 000043.jpg
        ├── 000043.txt
        ├── 000057.jpg
        ├── 000057.txt
        ├── 000070.jpg
        └── 000070.txt
    
  • Generate a dataset path .txt file, the example content is as follows:

    train.txt

    /home/qiuqiu/Desktop/dataset/train/000001.jpg
    /home/qiuqiu/Desktop/dataset/train/000002.jpg
    /home/qiuqiu/Desktop/dataset/train/000003.jpg
    

    val.txt

    /home/qiuqiu/Desktop/dataset/val/000070.jpg
    /home/qiuqiu/Desktop/dataset/val/000043.jpg
    /home/qiuqiu/Desktop/dataset/val/000057.jpg
    
  • Generate the .names category label file, the sample content is as follows:

    category.names

    person
    bicycle
    car
    motorbike
    ...
    
    
  • The directory structure of the finally constructed training data set is as follows:

    .
    ├── category.names        # .names category label file
    ├── train                 # train dataset
    │   ├── 000001.jpg
    │   ├── 000001.txt
    │   ├── 000002.jpg
    │   ├── 000002.txt
    │   ├── 000003.jpg
    │   └── 000003.txt
    ├── train.txt              # train dataset path .txt file
    ├── val                    # val dataset
    │   ├── 000043.jpg
    │   ├── 000043.txt
    │   ├── 000057.jpg
    │   ├── 000057.txt
    │   ├── 000070.jpg
    │   └── 000070.txt
    └── val.txt                # val dataset path .txt file
    
    

Get anchor bias

  • Generate anchor based on current dataset
    python3 genanchors.py --traintxt ./train.txt
    
  • The anchors6.txt file will be generated in the current directory,the sample content of the anchors6.txt is as follows:
    12.64,19.39, 37.88,51.48, 55.71,138.31, 126.91,78.23, 131.57,214.55, 279.92,258.87  # anchor bias
    0.636158                                                                             # iou
    

Build the training .data configuration file

  • Reference./data/coco.data
    [name]
    model_name=coco           # model name
    
    [train-configure]
    epochs=300                # train epichs
    steps=150,250             # Declining learning rate steps
    batch_size=64             # batch size
    subdivisions=1            # Same as the subdivisions of the darknet cfg file
    learning_rate=0.001       # learning rate
    
    [model-configure]
    pre_weights=None          # The path to load the model, if it is none, then restart the training
    classes=80                # Number of detection categories
    width=352                 # The width of the model input image
    height=352                # The height of the model input image
    anchor_num=3              # anchor num
    anchors=12.64,19.39, 37.88,51.48, 55.71,138.31, 126.91,78.23, 131.57,214.55, 279.92,258.87 #anchor bias
    
    [data-configure]
    train=/media/qiuqiu/D/coco/train2017.txt   # train dataset path .txt file
    val=/media/qiuqiu/D/coco/val2017.txt       # val dataset path .txt file 
    names=./data/coco.names                    # .names category label file
    

Train

  • Perform training tasks
    python3 train.py --data data/coco.data
    

Evaluation

  • Calculate map evaluation
    python3 evaluation.py --data data/coco.data --weights modelzoo/coco2017-epoch-0.235624ap-model.pth
    

Deploy

NCNN

Comments
  • low precision and and recall

    low precision and and recall

    Hello

    Im training with only one class from coco dataset, data file is standar only changes anchors and classes to 1

    [name]
    model_name=coco
    
    [train-configure]
    epochs=300
    steps=150,250
    batch_size=128
    subdivisions=1
    learning_rate=0.001
    
    [model-configure]
    pre_weights=model/backbone/backbone.pth
    classes=1
    width=352
    height=352
    anchor_num=3
    anchors=8.54,20.34, 25.67,59.99, 52.42,138.38, 103.52,235.28, 197.43,103.53, 238.02,287.40
    
    [data-configure]
    train=coco_person/train.txt
    val=coco_person/val.txt
    names=data/coco.names
    

    I get an AP of 0.41 but with low precision 0.53 and recall of 0.41 that makes that model prediction has lots of false positives.

    Why im getting that low precision and recall?

    PD. i checked bbox annotations and are correct

    Thanks!

    opened by natxopedreira 1
  • 测试样例,没找到生成图片文件

    测试样例,没找到生成图片文件

    下载源码,运行如下命令: python3 test.py --data data/coco.data --weights modelzoo/coco2017-0.241078ap-model.pth --img img/000139.jpg

    却没找到test_result.png,指导一下是什么原因?多谢

    opened by lixiangMindSpore 1
  • Anchor Number

    Anchor Number

    I reduce the anchor number from 3 to 2, and there is a problem during training (evaluation):

    anchor_boxes[:, :, :, :2] = ((r[:, :, :, :2].sigmoid() * 2. - 0.5) + grid) * stride
    

    RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 3

    The model configure is:

    [model-configure] pre_weights=None classes=7 width=320 height=320 anchor_num=2 anchors=10.54,9.51, 45.60,40.45, 119.62,95.06, 253.71,138.37

    opened by Yuanye-F 1
  • onnx2ncnn  error   Gather not supported yet!

    onnx2ncnn error Gather not supported yet!

    (base) ~/Yolo-FastestV2$ python pytorch2onnx.py --data ./data/coco.data --weights modelzoo/coco2017-epoch-0.235624ap-model.pth load param... /home/pc/Yolo-FastestV2/model/backbone/shufflenetv2.py:59: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert (num_channels % 4 == 0)

    ./onnx2ncnn model.onnx fast.param fast.bin Gather not supported yet!

    axis=0

    Gather not supported yet!

    axis=0

    Gather not supported yet!

    axis=0

    Gather not supported yet!

    opened by wavelet2008 1
  • 导出onnx后推理结果和pth不同

    导出onnx后推理结果和pth不同

    使用里面转换onnx的文件得到新的onnx模型后,同时用pth和onnx模型进行测试,发现得到的推理结果不同,使用onnxruntime onnx推理结果是(1,22,22,16)和(1,11,11,16) pth推理得到的是(1,12,22,22),(1,3,22,22),(1,1,22,22) (1,12,11,11),(1,3,11,11),(1,1,11,11) 即使做了处理后得到的最后结果也与pth文件得到的结果不同,不知道大佬能不能指点一下

    opened by ifdealer 0
  • train時發生錯誤,訊息如下

    train時發生錯誤,訊息如下

    Traceback (most recent call last): File "train.py", line 139, in _, _, AP, _ = utils.utils.evaluation(val_dataloader, cfg, model, device) File "D:\competition\Yolo-FastestV2-main\utils\utils.py", line 367, in evaluation for imgs, targets in pbar: File "C:\anaconda\envs\fire\lib\site-packages\tqdm\std.py", line 1195, in iter for obj in iterable: File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data\dataloader.py", line 521, in next data = self._next_data() File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data\dataloader.py", line 1203, in _next_data return self._process_data(data) File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data\dataloader.py", line 1229, in _process_data data.reraise() File "C:\anaconda\envs\fire\lib\site-packages\torch_utils.py", line 434, in reraise raise exception Exception: Caught Exception in DataLoader worker process 0. Original Traceback (most recent call last): File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data_utils\worker.py", line 287, in _worker_loop data = fetcher.fetch(index) File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data_utils\fetch.py", line 49, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data_utils\fetch.py", line 49, in data = [self.dataset[idx] for idx in possibly_batched_index] File "D:\competition\Yolo-FastestV2-main\utils\datasets.py", line 127, in getitem raise Exception("%s is not exist" % label_path) Exception: .txt is not exist

    opened by richardlotw 4
Releases(V0.2)
Owner
qiuqiuqiuqiu ...球
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023