StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

Overview

StarGAN v2 - Official PyTorch Implementation

StarGAN v2: Diverse Image Synthesis for Multiple Domains
Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-Woo Ha
In CVPR 2020. (* indicates equal contribution)

Paper: https://arxiv.org/abs/1912.01865
Video: https://youtu.be/0EVh5Ki4dIY

Abstract: A good image-to-image translation model should learn a mapping between different visual domains while satisfying the following properties: 1) diversity of generated images and 2) scalability over multiple domains. Existing methods address either of the issues, having limited diversity or multiple models for all domains. We propose StarGAN v2, a single framework that tackles both and shows significantly improved results over the baselines. Experiments on CelebA-HQ and a new animal faces dataset (AFHQ) validate our superiority in terms of visual quality, diversity, and scalability. To better assess image-to-image translation models, we release AFHQ, high-quality animal faces with large inter- and intra-domain variations. The code, pre-trained models, and dataset are available at clovaai/stargan-v2.

Teaser video

Click the figure to watch the teaser video.

IMAGE ALT TEXT HERE

TensorFlow implementation

The TensorFlow implementation of StarGAN v2 by our team member junho can be found at clovaai/stargan-v2-tensorflow.

Software installation

Clone this repository:

git clone https://github.com/clovaai/stargan-v2.git
cd stargan-v2/

Install the dependencies:

conda create -n stargan-v2 python=3.6.7
conda activate stargan-v2
conda install -y pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch
conda install x264=='1!152.20180717' ffmpeg=4.0.2 -c conda-forge
pip install opencv-python==4.1.2.30 ffmpeg-python==0.2.0 scikit-image==0.16.2
pip install pillow==7.0.0 scipy==1.2.1 tqdm==4.43.0 munch==2.5.0

Datasets and pre-trained networks

We provide a script to download datasets used in StarGAN v2 and the corresponding pre-trained networks. The datasets and network checkpoints will be downloaded and stored in the data and expr/checkpoints directories, respectively.

CelebA-HQ. To download the CelebA-HQ dataset and the pre-trained network, run the following commands:

bash download.sh celeba-hq-dataset
bash download.sh pretrained-network-celeba-hq
bash download.sh wing

AFHQ. To download the AFHQ dataset and the pre-trained network, run the following commands:

bash download.sh afhq-dataset
bash download.sh pretrained-network-afhq

Generating interpolation videos

After downloading the pre-trained networks, you can synthesize output images reflecting diverse styles (e.g., hairstyle) of reference images. The following commands will save generated images and interpolation videos to the expr/results directory.

CelebA-HQ. To generate images and interpolation videos, run the following command:

python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 \
               --checkpoint_dir expr/checkpoints/celeba_hq \
               --result_dir expr/results/celeba_hq \
               --src_dir assets/representative/celeba_hq/src \
               --ref_dir assets/representative/celeba_hq/ref

To transform a custom image, first crop the image manually so that the proportion of face occupied in the whole is similar to that of CelebA-HQ. Then, run the following command for additional fine rotation and cropping. All custom images in the inp_dir directory will be aligned and stored in the out_dir directory.

python main.py --mode align \
               --inp_dir assets/representative/custom/female \
               --out_dir assets/representative/celeba_hq/src/female

AFHQ. To generate images and interpolation videos, run the following command:

python main.py --mode sample --num_domains 3 --resume_iter 100000 --w_hpf 0 \
               --checkpoint_dir expr/checkpoints/afhq \
               --result_dir expr/results/afhq \
               --src_dir assets/representative/afhq/src \
               --ref_dir assets/representative/afhq/ref

Evaluation metrics

To evaluate StarGAN v2 using Fréchet Inception Distance (FID) and Learned Perceptual Image Patch Similarity (LPIPS), run the following commands:

# celeba-hq
python main.py --mode eval --num_domains 2 --w_hpf 1 \
               --resume_iter 100000 \
               --train_img_dir data/celeba_hq/train \
               --val_img_dir data/celeba_hq/val \
               --checkpoint_dir expr/checkpoints/celeba_hq \
               --eval_dir expr/eval/celeba_hq

# afhq
python main.py --mode eval --num_domains 3 --w_hpf 0 \
               --resume_iter 100000 \
               --train_img_dir data/afhq/train \
               --val_img_dir data/afhq/val \
               --checkpoint_dir expr/checkpoints/afhq \
               --eval_dir expr/eval/afhq

Note that the evaluation metrics are calculated using random latent vectors or reference images, both of which are selected by the seed number. In the paper, we reported the average of values from 10 measurements using different seed numbers. The following table shows the calculated values for both latent-guided and reference-guided synthesis.

Dataset FID (latent) LPIPS (latent) FID (reference) LPIPS (reference) Elapsed time
celeba-hq 13.73 ± 0.06 0.4515 ± 0.0006 23.84 ± 0.03 0.3880 ± 0.0001 49min 51s
afhq 16.18 ± 0.15 0.4501 ± 0.0007 19.78 ± 0.01 0.4315 ± 0.0002 64min 49s

Training networks

To train StarGAN v2 from scratch, run the following commands. Generated images and network checkpoints will be stored in the expr/samples and expr/checkpoints directories, respectively. Training takes about three days on a single Tesla V100 GPU. Please see here for training arguments and a description of them.

# celeba-hq
python main.py --mode train --num_domains 2 --w_hpf 1 \
               --lambda_reg 1 --lambda_sty 1 --lambda_ds 1 --lambda_cyc 1 \
               --train_img_dir data/celeba_hq/train \
               --val_img_dir data/celeba_hq/val

# afhq
python main.py --mode train --num_domains 3 --w_hpf 0 \
               --lambda_reg 1 --lambda_sty 1 --lambda_ds 2 --lambda_cyc 1 \
               --train_img_dir data/afhq/train \
               --val_img_dir data/afhq/val

Animal Faces-HQ dataset (AFHQ)

We release a new dataset of animal faces, Animal Faces-HQ (AFHQ), consisting of 15,000 high-quality images at 512×512 resolution. The figure above shows example images of the AFHQ dataset. The dataset includes three domains of cat, dog, and wildlife, each providing about 5000 images. By having multiple (three) domains and diverse images of various breeds per each domain, AFHQ sets a challenging image-to-image translation problem. For each domain, we select 500 images as a test set and provide all remaining images as a training set. To download the dataset, run the following command:

bash download.sh afhq-dataset

[Update: 2021.07.01] We rebuild the original AFHQ dataset by using high-quality resize filtering (i.e., Lanczos resampling). Please see the clean FID paper that brings attention to the unfortunate software library situation for downsampling. We thank to Alias-Free GAN authors for their suggestion and contribution to the updated AFHQ dataset. If you use the updated dataset, we recommend to cite not only our paper but also their paper.

The differences from the original dataset are as follows:

  • We resize the images using Lanczos resampling instead of nearest neighbor downsampling.
  • About 2% of the original images had been removed. So the set is now has 15803 images, whereas the original had 16130.
  • Images are saved as PNG format to avoid compression artifacts. This makes the files bigger than the original, but it's worth it.

To download the updated dataset, run the following command:

bash download.sh afhq-v2-dataset

License

The source code, pre-trained models, and dataset are available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.

For business inquiries, please contact [email protected].
For technical and other inquires, please contact [email protected].

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2020starganv2,
  title={StarGAN v2: Diverse Image Synthesis for Multiple Domains},
  author={Yunjey Choi and Youngjung Uh and Jaejun Yoo and Jung-Woo Ha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Acknowledgements

We would like to thank the full-time and visiting Clova AI Research (now NAVER AI Lab) members for their valuable feedback and an early review: especially Seongjoon Oh, Junsuk Choe, Muhammad Ferjad Naeem, and Kyungjune Baek. We also thank Alias-Free GAN authors for their contribution to the updated AFHQ dataset.

Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022