A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

Overview

sam4onnx

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Specify an arbitrary OP name and Constant type INPUT name or an arbitrary OP name and Attribute name, and pass the modified constants to rewrite the parameters of the relevant OP.
  • Two types of input are accepted: .onnx file input and onnx.ModelProto format objects.
  • To design the operation to be simple, only a single OP can be specified.
  • Attributes and constants are forcibly rewritten, so the integrity of the entire graph is not checked in detail.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sam4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sam4onnx:latest

### docker build
$ docker build -t pinto0309/sam4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sam4onnx:latest
$ cd /workdir

2. CLI Usage

$ sam4onnx -h

usage:
    sam4onnx [-h]
    --input_onnx_file_path INPUT_ONNX_FILE_PATH
    --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    [--op_name OP_NAME]
    [--attributes NAME DTYPE VALUE]
    [--input_constants NAME DTYPE VALUE]
    [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  --op_name OP_NAME
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        e.g. --op_name aaa

  --attributes NAME DTYPE VALUE
        Parameter to change the attribute of the OP specified in --op_name.
        If the OP specified in --op_name has no attributes,
        it is ignored. attributes can be specified multiple times.
        --attributes name dtype value dtype is one of
        "float32" or "float64" or "int32" or "int64" or "str".
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --attributes alpha float32 [[1.0]]
        --attributes beta float32 [1.0]
        --attributes transA int64 0
        --attributes transB int64 0

  --input_constants NAME DTYPE VALUE
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        input_constants can be specified multiple times.
        --input_constants constant_name numpy.dtype value

        e.g.
        --input_constants constant_name1 int64 0
        --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sam4onnx import modify
>>> help(modify)
Help on function modify in module sam4onnx.onnx_attr_const_modify:

modify(
    input_onnx_file_path: Union[str, NoneType] = '',
    output_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    op_name: Union[str, NoneType] = '',
    attributes: Union[dict, NoneType] = None,
    input_constants: Union[dict, NoneType] = None,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    op_name: Optional[str]
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        Default: ''
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.

        {"attr_name1": numpy.ndarray, "attr_name2": numpy.ndarray, ...}

        e.g. attributes =
            {
                "alpha": np.asarray(1.0, dtype=np.float32),
                "beta": np.asarray(1.0, dtype=np.float32),
                "transA": np.asarray(0, dtype=np.int64),
                "transB": np.asarray(0, dtype=np.int64)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    input_constants: Optional[dict]
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        {"constant_name1": numpy.ndarray, "constant_name2": numpy.ndarray, ...}

        e.g.
        input_constants =
            {
                "constant_name1": np.asarray(0, dtype=np.int64),
                "constant_name2": np.asarray([[1.0,2.0,3.0],[4.0,5.0,6.0]], dtype=np.float32)
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    modified_graph: onnx.ModelProto
        Mddified onnx ModelProto

4. CLI Execution

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path input.onnx \
--output_onnx_file_path output.onnx \
--attributes perm int64 [0,1]

5. In-script Execution

from sam4onnx import modify

modified_graph = modify(
    onnx_graph=graph,
    input_constants={"241": np.asarray([1], dtype=np.int64)},
    non_verbose=True,
)

6. Sample

6-1. Transpose - update perm

image

$ sam4onnx \
--op_name Transpose_17 \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--attributes perm int64 [0,1]

image

6-2. Mul - update Constant (170) - From: 2, To: 1

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 170 float32 1

image

6-3. Reshape - update Constant (241) - From: [-1], To: [1]

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--input_constants 241 int64 [1]

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Simple ONNX operation generator. Simple Operation Generator for ONNX.
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Ranger deep learning optimizer rewrite to use newest components
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Releases(1.0.12)
  • 1.0.12(Jan 2, 2023)

    What's Changed

    • Support for models with custom domains by @PINTO0309 in https://github.com/PINTO0309/sam4onnx/pull/2

    New Contributors

    • @PINTO0309 made their first contribution in https://github.com/PINTO0309/sam4onnx/pull/2

    Full Changelog: https://github.com/PINTO0309/sam4onnx/compare/1.0.11...1.0.12

    Source code(tar.gz)
    Source code(zip)
  • 1.0.11(Sep 8, 2022)

    • Add short form parameter
      $ sam4onnx -h
      
      usage:
          sam4onnx [-h]
          -if INPUT_ONNX_FILE_PATH
          -of OUTPUT_ONNX_FILE_PATH
          [-on OP_NAME]
          [-a NAME DTYPE VALUE]
          [-da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]]
          [-ic NAME DTYPE VALUE]
          [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
          Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
          Output onnx file path.
      
        -on OP_NAME, --op_name OP_NAME
          OP name of the attributes to be changed.
          When --attributes is specified, --op_name must always be specified.
          e.g. --op_name aaa
      
        -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
          Parameter to change the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. attributes can be specified multiple times.
          --attributes name dtype value dtype is one of
          "float32" or "float64" or "int32" or "int64" or "str".
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --attributes alpha float32 [[1.0]]
          --attributes beta float32 [1.0]
          --attributes transA int64 0
          --attributes transB int64 0
      
        -da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...], --delete_attributes DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]
          Parameter to delete the attribute of the OP specified in --op_name.
          If the OP specified in --op_name has no attributes,
          it is ignored. delete_attributes can be specified multiple times.
          --delete_attributes name1 name2 name3
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g. --delete_attributes alpha beta
      
        -ic INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS, --input_constants INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS
          Specifies the name of the constant to be changed.
          If you want to change only the constant,
          you do not need to specify --op_name and --attributes.
          input_constants can be specified multiple times.
          --input_constants constant_name numpy.dtype value
      
          e.g.
          --input_constants constant_name1 int64 0
          --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]
          --input_constants constant_name3 float32 [\'-Infinity\']
      
        -n, --non_verbose
          Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.10(Aug 7, 2022)

  • 1.0.9(Jul 17, 2022)

    • Support for constant rewriting when the same constant is shared. Valid only when op_name is specified. Generates a new constant that is different from the shared constant.

    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

      sam4onnx \
      --input_onnx_file_path yolov7-tiny_test_sim.onnx \
      --output_onnx_file_path yolov7-tiny_test_sim_mod.onnx \
      --op_name Reshape_156 \
      --input_constants onnx::Reshape_391 int64 [1,14400,85]
      
    • Reshape_156 onnx::Reshape_391 int64 [1, -1, 85] -> Reshape_156 onnx::Reshape_391_mod_3 int64 [1, 14400, 85] image

    • Reshape_174 onnx::Reshape_391 int64 [1, -1, 85] image

    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Jun 7, 2022)

  • 1.0.7(May 25, 2022)

  • 1.0.6(May 15, 2022)

  • 1.0.5(May 12, 2022)

  • 1.0.4(May 5, 2022)

  • 1.0.3(May 5, 2022)

    • Support for additional attributes
      • Note that the correct attribute set according to the OP's opset is not checked, so any attribute can be added.
      • The figure below shows the addition of the attribute perm to Reshape, which does not originally exist. image
    Source code(tar.gz)
    Source code(zip)
  • 1.0.2(May 3, 2022)

  • 1.0.1(Apr 16, 2022)

  • 1.0.0(Apr 15, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties

Element selection for functional materials discovery by integrated machine learning of atomic contributions to properties 8.11.2021 Andrij Vasylenko I

Leverhulme Research Centre for Functional Materials Design 4 Dec 20, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021