PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Overview

SupContrast: Supervised Contrastive Learning

This repo covers an reference implementation for the following papers in PyTorch, using CIFAR as an illustrative example:
(1) Supervised Contrastive Learning. Paper
(2) A Simple Framework for Contrastive Learning of Visual Representations. Paper

Loss Function

The loss function SupConLoss in losses.py takes features (L2 normalized) and labels as input, and return the loss. If labels is None or not passed to the it, it degenerates to SimCLR.

Usage:

from losses import SupConLoss

# define loss with a temperature `temp`
criterion = SupConLoss(temperature=temp)

# features: [bsz, n_views, f_dim]
# `n_views` is the number of crops from each image
# better be L2 normalized in f_dim dimension
features = ...
# labels: [bsz]
labels = ...

# SupContrast
loss = criterion(features, labels)
# or SimCLR
loss = criterion(features)
...

Comparison

Results on CIFAR-10:

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy 95.0
SupContrast ResNet50 Supervised Contrastive 96.0
SimCLR ResNet50 Unsupervised Contrastive 93.6

Results on CIFAR-100:

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy 75.3
SupContrast ResNet50 Supervised Contrastive 76.5
SimCLR ResNet50 Unsupervised Contrastive 70.7

Results on ImageNet (Stay tuned):

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy -
SupContrast ResNet50 Supervised Contrastive 79.1 (MoCo trick)
SimCLR ResNet50 Unsupervised Contrastive -

Running

You might use CUDA_VISIBLE_DEVICES to set proper number of GPUs, and/or switch to CIFAR100 by --dataset cifar100.
(1) Standard Cross-Entropy

python main_ce.py --batch_size 1024 \
  --learning_rate 0.8 \
  --cosine --syncBN \

(2) Supervised Contrastive Learning
Pretraining stage:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5 \
  --temp 0.1 \
  --cosine

You can also specify --syncBN but I found it not crucial for SupContrast (syncBN 95.9% v.s. BN 96.0%).
Linear evaluation stage:

python main_linear.py --batch_size 512 \
  --learning_rate 5 \
  --ckpt /path/to/model.pth

(3) SimCLR
Pretraining stage:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5 \
  --temp 0.5 \
  --cosine --syncBN \
  --method SimCLR

The --method SimCLR flag simply stops labels from being passed to SupConLoss criterion. Linear evaluation stage:

python main_linear.py --batch_size 512 \
  --learning_rate 1 \
  --ckpt /path/to/model.pth

On custom dataset:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5  \ 
  --temp 0.1 --cosine \
  --dataset path \
  --data_folder ./path \
  --mean "(0.4914, 0.4822, 0.4465)" \
  --std "(0.2675, 0.2565, 0.2761)" \
  --method SimCLR

The --data_folder must be of form ./path/label/xxx.png folowing https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder convension.

and

t-SNE Visualization

(1) Standard Cross-Entropy

(2) Supervised Contrastive Learning

(3) SimCLR

Reference

@Article{khosla2020supervised,
    title   = {Supervised Contrastive Learning},
    author  = {Prannay Khosla and Piotr Teterwak and Chen Wang and Aaron Sarna and Yonglong Tian and Phillip Isola and Aaron Maschinot and Ce Liu and Dilip Krishnan},
    journal = {arXiv preprint arXiv:2004.11362},
    year    = {2020},
}
Owner
Yonglong Tian
CS Ph.D. student in AI @ MIT
Yonglong Tian
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022