Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Overview

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation

In this repo, we provide the code for our paper : "Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?", available at https://arxiv.org/abs/2012.06166:

Getting Started

Minimum requirements

  1. Software :
  • torch==1.7.0
  • numpy==1.18.4
  • cv2==4.2.0
  • pyyaml==5.3.1

For both training and testing, metrics monitoring is done through visdom_logger (https://github.com/luizgh/visdom_logger). To install this package with pip, use the following command:

pip install git+https://github.com/luizgh/visdom_logger.git
  1. Hardware : A 11 GB+ CUDA-enabled GPU

Download data

All pre-processed from Google Drive

We provide the versions of Pascal-VOC 2012 and MS-COCO 2017 used in this work at https://drive.google.com/file/d/1Lj-oBzBNUsAqA9y65BDrSQxirV8S15Rk/view?usp=sharing. You can download the full .zip and directly extract it at the root of this repo.

If the previous download failed

Here is the structure of the data folder for you to reproduce:

data
├── coco
│   ├── annotations
│   ├── train
│   ├── train2014
│   ├── val
│   └── val2014
└── pascal
|    ├── JPEGImages
|    └── SegmentationClassAug

Pascal : The JPEG images can be found in the PascalVOC 2012 toolkit to be downloaded at PascalVOC2012 and SegmentationClassAug (pre-processed ground-truth masks).

Coco : Coco 2014 train, validation images and annotations can be downloaded at Coco. Once this is done, you will have to generate the subfolders coco/train and coco/val (ground truth masks). Both folders can be generated by executing the python script data/coco/create_masks.py (note that the script uses the package pycocotools that can be found at https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools):

python

cd data/coco
python create_masks.py

About the train/val splits

The train/val splits are directly provided in lists/. How they were obtained is explained at https://github.com/Jia-Research-Lab/PFENet

Download pre-trained models

Pre-trained backbones

First, you will need to download the ImageNet pre-trained backbones at https://drive.google.com/drive/folders/1Hrz1wOxOZm4nIIS7UMJeL79AQrdvpj6v and put them under initmodel/. These will be used if you decide to train your models from scratch.

Pre-trained models

We directly provide the full pre-trained models at https://drive.google.com/file/d/1iuMAo5cJ27oBdyDkUI0JyGIEH60Ln2zm/view?usp=sharing. You can download them and directly extract them at the root of this repo. This includes Resnet50 and Resnet101 backbones on Pascal-5i, and Resnet50 on Coco-20i.

Overview of the repo

Data are located in data/. All the code is provided in src/. Default configuration files can be found in config_files/. Training and testing scripts are located in scripts/. Lists/ contains the train/validation splits for each dataset.

Training (optional)

If you want to use the pre-trained models, this step is optional. Otherwise, you can train your own models from scratch with the scripts/train.sh script, as follows.

bash scripts/train.sh {data} {fold} {[gpu_ids]} {layers}

For instance, if you want to train a Resnet50-based model on the fold-0 of Pascal-5i on GPU 1, use:

bash scripts/train.sh pascal 0 [1] 50

Note that this code supports distributed training. If you want to train on multiple GPUs, you may simply replace [1] in the previous examples with the list of gpus_id you want to use.

Testing

To test your models, use the scripts/test.sh script, the general synthax is:

bash scripts/test.sh {data} {shot} {[gpu_ids]} {layers}

This script will test successively on all folds of the current dataset. Below are presented specific commands for several experiments.

Pascal-5i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 59.8 / 64.6 68.3 / 71.4 62.1 / 71.1 48.5 / 59.3 59.7 / 66.6
Oracle-RePRI Resnet-50 72.4 / 75.1 78.0 / 80.8 77.1 / 81.4 65.8 / 74.4 73.3 / 77.9
RePRI Resnet-101 59.6 / 66.2 68.3 / 71.4 62.2 / 67.0 47.2 / 57.7 59.4 / 65.6
Oracle-RePRI Resnet-101 73.9 / 76.8 79.7 / 81.7 76.1 / 79.5 65.1 / 74.5 73.7 / 78.1

Command:

bash scripts/test.sh pascal 1 [0] 50  # 1-shot
bash scripts/test.sh pascal 5 [0] 50  # 5-shot

Coco-20i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 32.0 / 39.3 38.7 / 45.4 32.7 / 39.7 33.1 / 41.8 34.1/41.6
Oracle-RePRI Resnet-50 49.3 / 51.5 51.4 / 60.8 38.2 / 54.7 41.6 / 55.2 45.1 / 55.5

Command :

bash scripts/test.sh coco 1 [0] 50  # 1-shot
bash scripts/test.sh coco 5 [0] 50  # 5-shot

Coco-20i -> Pascal-VOC

The folds used for cross-domain experiments are presented in the image below:

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 52.8 / 57.7 64.0 / 66.1 64.1 / 67.6 71.5 / 73.1 63.1 / 66.2
Oracle-RePRI Resnet-50 69.6 / 73.5 71.7 / 74.9 77.6 / 82.2 86.2 / 88.1 76.2 / 79.7

Command :

bash scripts/test.sh coco2pascal 1 [0] 50  # 1-shot
bash scripts/test.sh coco2pascal 5 [0] 50  # 5-shot

Monitoring metrics

For both training and testing, you can monitor metrics using visdom_logger (https://github.com/luizgh/visdom_logger). To install this package, simply clone the repo and install it with pip:

git clone https://github.com/luizgh/visdom_logger.git
pip install -e visdom_logger

Then, you need to start a visdom server with:

python -m visdom.server -port 8098

Finally, add the line visdom_port 8098 in the options in scripts/train.sh or scripts/test.sh, and metrics will be displayed at this port. You can monitor them through your navigator.

Contact

For further questions or details, please post an issue or directly reach out to Malik Boudiaf ([email protected])

Acknowledgments

We gratefully thank the authors of https://github.com/Jia-Research-Lab/PFENet, as well as https://github.com/hszhao/semseg from which some parts of our code are inspired.

Owner
Malik Boudiaf
Malik Boudiaf
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022