Motion planning environment for Sampling-based Planners

Overview

Sampling-Based Motion Planners' Testing Environment

Python version CI Build docs Code style: black License DOI

Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quickly test different sampling-based algorithms for motion planning. sbp-env focuses on the flexibility of tinkering with different aspects of the framework, and had divided the main planning components into two categories (i) samplers and (ii) planners.

The focus of motion planning research had been mainly on (i) improving the sampling efficiency (with methods such as heuristic or learned distribution) and (ii) the algorithmic aspect of the planner using different routines to build a connected graph. Therefore, by separating the two components one can quickly swap out different components to test novel ideas.

Have a look at the documentations for more detail information. If you are looking for the previous code for the RRdT* paper it is now archived at soraxas/rrdt.

Installation

Optional

I recommend first creates a virtual environment with

# assumes python3 and bash shell
python -m venv sbp_env
source sbp_env/bin/activate

Install dependencies

You can install all the needed packages with pip.

pip install -r requirements.txt

There is also an optional dependency on klampt if you want to use the 3D simulator. Refer to its installation guide for details.

Quick Guide

You can get a detailed help message with

python main.py --help

but the basic syntax is

python main.py <PLANNER> <MAP> [options]

It will open a new window that display a map on it. Every white pixel is assumed to be free, and non-white pixels are obstacles. You will need to use your mouse to select two points on the map, the first will be set as the starting point and the second as the goal point.

Demos

Run maps with different available Planners

This repository contains a framework to performs quick experiments for Sampling-Based Planners (SBPs) that are implemented in Python. The followings are planners that had implemented and experimented in this framework.

Note that the commands shown in the respective demos can be customised with additional options. In fact, the actual command format used for the demonstrations is

python main.py <PLANNER> maps/room1.png start <sx>,<sy> goal <sx>,<sy> -vv

to have a fix set of starting and goal points for consistent visualisation, but we omitted the start/goal options in the following commands for clarity.

RRdT*

python main.py rrdt maps/room1.png -vv

RRdT* Planner

RRT*

python main.py rrt maps/room1.png -vv

RRT* Planner

Bi-RRT*

python main.py birrt maps/room1.png -vv

Bi-RRT* Planner

Informed RRT*

python main.py informedrrt maps/room1.png -vv

Informed RRT* Planner

The red ellipse shown is the dynamic sampling area for Informed RRT*

Others

There are also some other planners included in this repository. Some are preliminary planner that inspired RRdT*, some are planners with preliminary ideas, and some are useful for debugging.

Reference to this repository

You can use the following citation if you use this repository for your research

@article{lai2021SbpEnv,
  doi = {10.21105/joss.03782},
  url = {https://doi.org/10.21105/joss.03782},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {66},
  pages = {3782},
  author = {Tin Lai},
  title = {sbp-env: A Python Package for Sampling-based Motion Planner and Samplers},
  journal = {Journal of Open Source Software}
}
Comments
  • question on (example) usage

    question on (example) usage

    According to the submitted paper, with sbp-env "one can quickly swap out different components to test novel ideas" and "validate ... hypothesis rapidly". However, from the examples in the documentation, it is unclear to me how I can obtain performance metrics on the planners when a run a test.

    Is there a way to save such metrics to a file or print them when running planners in sbp-env? If not, this might be a nice feature to implement in a future version. Otherwise, you could consider adding an example to the documentation on how to compare different planners in the same scenario.

    (this question is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 5
  • Path recognition issue

    Path recognition issue

    I tried some source, destination positions with the following command and there seems some issue in recognition of the path. python main.py rrt maps/4d.png --engine 4d

    Attaching screenshot below: Screenshot from 2021-10-07 00-43-15

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Python version compatibility with scipy

    Python version compatibility with scipy

    Mentioning the requirement of python version >= 3.8 in README would also help users the way it's done over here. Python versions < 3.8 are not compatible with scipy 1.6

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 3
  • Suggestion to make installation easier

    Suggestion to make installation easier

    I was wondering why you have the following remark block in your installation instructions: image

    I think it would be easier to add those two packages to the file requirements_klampt.txt. That way they'll be installed automatically, it saves the user an extra action. Or is there any reason I'm missing why that shouldn't be done?

    opened by OlgerSiebinga 3
  • Exception after running the example from the documentation

    Exception after running the example from the documentation

    When I run the example from the quick start page in the documentation, an exception occurs.

    The command: python main.py rrt maps/room1.png

    The exception:

    Traceback (most recent call last):
      File "main.py", line 287, in <module>
        environment.run()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 198, in run
        self.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\visualiser.py", line 148, in terminates_hook
        self.env_instance.sampler.visualiser.terminates_hook()
      File "C:\Users\Olger\PycharmProjects\sbp-env\env.py", line 126, in __getattr__
        return object.__getattribute__(self.visualiser, attr)
    AttributeError: 'PygameEnvVisualiser' object has no attribute 'sampler'
    

    The exception only occurs after the simulation has finished so it seems like a minor problem. Although I'm not really sure what happens at env.py, line 126, in __getattr__ and why. So, I don't have a proposed fix.

    opened by OlgerSiebinga 2
  • invalid start and goal point can be specified with command-line interface

    invalid start and goal point can be specified with command-line interface

    When specifying a goal and start point in the commands line, it is possible to specify invalid points. Specifying an invalid start and goal will result in an infinite loop.

    For example, running: python main.py rrt maps\room1.png start 10,10 goal 15,15, will result in an infinite loop with the following GUI:

    image

    Expected behavior when supplying an invalid option would be an exception.

    opened by OlgerSiebinga 1
  • Test Instructions

    Test Instructions

    Though it's standard, adding instruction to run tests in the documentation might be helpful for users wanting to contribute.

    (Part of the JOSS review openjournals/joss-reviews#3782)

    opened by KanishAnand 1
  • Graph building of prm planner without user information

    Graph building of prm planner without user information

    The graph building method in the prm planner (build_graph() in prmPlanner.py) can take quite some time when a large number of nodes is used. However, the user is not notified that the planner is still processing data. The first time I encountered this, I suspected the software got stuck in an infinite loop because the window was not responding anymore. I think this can be easily fixed by adding a tqdm bar in the build_graph() method (at line 83)

    (this suggestion is part of the JOSS review openjournals/joss-reviews#3782)

    opened by OlgerSiebinga 1
  • Skip-optimality Problem

    Skip-optimality Problem

    Hi 1.I am wonderingt that the parameter (use_rtree)in choose_least_cost_parent() function and rewire() funtion (RRT). Is it no longer necessary because we use numpy's calculation method? 2. When i run the informedrrt algorithm, the ellipse display of the graphic drawing does not appear as shown in the document. How can it be displayed? I'm sorry to interrupt you from your busy schedule.

    opened by Jiawei-00 7
Releases(v2.0.1)
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021