Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Related tags

Deep LearningETSN
Overview

Efficient Two-Step Networks for Temporal Action Segmentation

This repository provides a PyTorch implementation of the paper Efficient Two-Step Networks for Temporal Action Segmentation.

Requirements

* Python 3.8.5
* pyTorch 1.8.1

You can download packages using requirements.txt.
pip install -r requirements.txt

Datasets

  • Download the data provided by MS-TCN, which contains the I3D features (w/o fine-tune) and the ground truth labels for 3 datasets. (~30GB)
  • Extract it so that you have the data folder in the same directory as train.py.

directory structure

├── config
│   ├── 50salads
│   ├── breakfast
│   └── gtea
├── csv
│   ├── 50salads
│   ├── breakfast
│   └── gtea
├─ dataset ─── 50salads/...
│           ├─ breakfast/...
│           └─ gtea ─── features/
│                    ├─ groundTruth/
│                    ├─ splits/
│                    └─ mapping.txt
├── libs
├── result
├── utils 
├── requirements.txt
├── train.py
├── eval.py
└── README.md

Training and Testing of ETSN

Setting

First, convert ground truth files into numpy array.

python utils/generate_gt_array.py ./dataset

Then, please run the below script to generate csv files for data laoder'.

python utils/builda_dataset.py ./dataset

Training

You can train a model by changing the settings of the configuration file.

python train.py ./config/xxx/xxx/config.yaml

Evaluation

You can evaluate the performance of result after running.

python eval.py ./result/xxx/xxx/config.yaml test

We also provide trained ETSN model in Google Drive. Extract it so that you have the result folder in the same directory as train.py.

average cross validation results

python utils/average_cv_results.py [result_dir]

Citation

If you find our code useful, please cite our paper.

@article{LI2021373,
author = {Yunheng Li and Zhuben Dong and Kaiyuan Liu and Lin Feng and Lianyu Hu and Jie Zhu and Li Xu and Yuhan wang and Shenglan Liu},
journal = {Neurocomputing},
title = {Efficient Two-Step Networks for Temporal Action Segmentation},
year = {2021},
volume = {454},
pages = {373-381},
issn = {0925-2312},
doi = {https://doi.org/10.1016/j.neucom.2021.04.121},
url = {https://www.sciencedirect.com/science/article/pii/S0925231221006998},

}

Contact

For any question, please raise an issue or contact.

Acknowledgement

We appreciate MS-TCN for extracted I3D feature, backbone network and evaluation code.

Appreciating Yuchi Ishikawa shares the re-implementation of MS-TCN with pytorch.

Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022