Multiple-Object Tracking with Transformer

Overview

TransTrack: Multiple-Object Tracking with Transformer

License: MIT

Introduction

TransTrack: Multiple-Object Tracking with Transformer

Models

Training data Training time Validation MOTA download
crowdhuman, mot_half 36h + 1h 65.4 model
crowdhuman 36h 53.8 model
mot_half 8h 61.6 model

Models are also available in Baidu Drive by code m4iv.

Notes

  • Evaluating crowdhuman-training model and mot-training model use different command lines, see Steps.
  • We observe about 1 MOTA noise.
  • If the resulting MOTA of your self-trained model is not desired, playing around with the --track_thresh sometimes gives a better performance.
  • The training time is on 8 NVIDIA V100 GPUs with batchsize 16.
  • We use the models pre-trained on imagenet.

Demo

Installation

The codebases are built on top of Deformable DETR and CenterTrack.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone https://github.com/PeizeSun/TransTrack.git
cd TransTrack
cd models/ops
python setup.py build install
cd ../..
pip install -r requirements.txt
  1. Prepare dataset
mkdir -p crowdhuman/annotations
cp -r /path_to_crowdhuman_dataset/annotations/CrowdHuman_val.json crowdhuman/annotations/CrowdHuman_val.json
cp -r /path_to_crowdhuman_dataset/annotations/CrowdHuman_train.json crowdhuman/annotations/CrowdHuman_train.json
cp -r /path_to_crowdhuman_dataset/CrowdHuman_train crowdhuman/CrowdHuman_train
cp -r /path_to_crowdhuman_dataset/CrowdHuman_val crowdhuman/CrowdHuman_val
mkdir mot
cp -r /path_to_mot_dataset/train mot/train
cp -r /path_to_mot_dataset/test mot/test
python track_tools/convert_mot_to_coco.py

CrowdHuman dataset is available in CrowdHuman. We provide annotations of json format.

MOT dataset is available in MOT.

  1. Pre-train on crowdhuman
sh track_exps/crowdhuman_train.sh
python track_tools/crowdhuman_model_to_mot.py

The pre-trained model is available crowdhuman_final.pth.

  1. Train TransTrack
sh track_exps/crowdhuman_mot_trainhalf.sh
  1. Evaluate TransTrack
sh track_exps/mot_val.sh
sh track_exps/mot_eval.sh
  1. Visualize TransTrack
python track_tools/txt2video.py

Notes

  • Evaluate pre-trained CrowdHuman model on MOT
sh track_exps/det_val.sh
sh track_exps/mot_eval.sh

License

TransTrack is released under MIT License.

Citing

If you use TransTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{transtrack,
  title   =  {TransTrack: Multiple-Object Tracking with Transformer},
  author  =  {Peize Sun and Yi Jiang and Rufeng Zhang and Enze Xie and Jinkun Cao and Xinting Hu and Tao Kong and Zehuan Yuan and Changhu Wang and Ping Luo},
  journal =  {arXiv preprint arXiv: 2012.15460},
  year    =  {2020}
}
Owner
Peize Sun
Peize Sun
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022