This repository is all about spending some time the with the original problem posed by Minsky and Papert

Overview

The Original Problem

Computer Vision has a very interesting history. It's roots really go all the way back to the beginning of computing and Artifical Intelligence. In these early days, it was unknown just how easy or difficult it would be to recreate the function of the human visual system. A great example of this is the 1966 MIT Summer Vision Project. Marvin Minsky and Seymour Papert, co-directors of the MIT AI Labratory, begun the summer with some ambitious goals:

Minsky and Papert assigned Gerald Sussman, an MIT undergraduate studunt as project lead, and setup specific goals for the group around recognizing specific objects in images, and seperating these objects from their backgrounds.

Just how hard is it to acheive the goals Minsky and Papert laid out? How has the field of computer vision advance since that summer? Are these tasks trivial now, 50+ years later? Do we understand how the human visual system works? Just how hard is computer vision and how far have we come?

This Repository

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

The repository is broadly divided into two areas: notebooks and a programming challenge. The programming challenge is described in more detail below, and closely follows the goals setup by Minsky and Papert back in 1966. The notebooks are here to give you some help along the way.

Notebooks

Section Notebook Required Reading/Viewing Additional Reading/Viewing Code Developed
1 The Original Problem The Summer Vision Project - -
2 Robert's Cross Only Abstact and Pages 25-27 - Machine perception of 3d solids - convert_to_grayscale, roberts_cross
3 Image Filtering How Blurs & Filters Work - Computerphile - make_gaussian_kernel, filter_2d
4 The Sobel–Feldman Operator Finding the Edges (Sobel Operator) - Computerphile History of Sobel -
5 The Hough Transform [Part 1] Pattern classification Section 9.2.3, Bubble Chamber Video -
6 The Hough Transform [Part 2] How the Hough Transform was Invented Use of the Hough transformation to detect lines and curves in pictures. HoughAccumulator

Viewing Notebooks

The links in the table above take you to externally hosted HTML exports of the notebooks. This works pretty well, except html won't render embedded slide shows unfortunately. The best way to view the notebooks is to clone this repo and run them yourself! Checkout the setup instructions below.

Animations

The notebooks in this repository make frequent use of gif animations. These files are pretty large, so we don't store them on github, and they unfortunately won't show up when viewing the notebooks via github. The ideal way to view the notebooks is to clone the repo, download the videos, and use the recommended jupyterthemes below. Instructions on downloading videos are below.

Note on Launching the Jupyter Notebooks

To properly view the images and animations, please launch your jupyter notebook from the root directory of this repository.

Programming Challenge

Instructions

  • Write a method classify.py that takes in an image and returns a prediction - ball, brick, or cylinder.
  • An example script in located in challenge/sample_student.py
  • Your script will be automatically evaluated on a set of test images.
  • The testing images are quite similar to the training images, and organized into the same difficulty categories.
  • You are allowed 10 submissions to the evaluation server, which will provide immediate feedback.

The Data

Easy Examples

Grading

Following the progression set out the MIT the summer project, we'll start with easy images, and move to more difficult image with more complex backgrounds as we progress. For each difficulty level, we will compute the average accuracy of your classifier. We will then compute an average overall accuracy, weighting easier examples more:

overall_accuracy = 0.5*accuracy_easy 
                 + 0.2*accuracy_medium_1 
                 + 0.2*accuracy_medium_2 
                 + 0.1*accuracy_hard 
Overall Accuracy Points
>= 0.6 10/10
0.55 <= a < 0.6 9/10
0.5 <= a < 0.55 8/10
0.45 <= a < 0.5 7/10
0.40 <= a < 0.45 6/10
0.35 <= a < 0.40 5/10
a < 0.35 4/10
Non-running code 0/10

A quick note on difficulty

Depending on your background, this challenge may feel a bit like getting thrown into the deep end. If it feels a bit daunting - that's ok! Half of the purpose of this assignement is to help you develop an appreciation for why computer vision is so hard. As you may have already guessed, Misky, Sussman, and Papert did not reach their summer goals - and I'm not expecting you to either. The grading table above reflects this - for example, if you're able to get 90% accuracy on the easy examples, and simply guess randomly on the rest of the examples, you'll earn 10/10 points.

Setup

The Python 3 Anaconda Distribution is the easiest way to get going with the notebooks and code presented here.

(Optional) You may want to create a virtual environment for this repository:

conda create -n cv python=3 
source activate cv

You'll need to install the jupyter notebook to run the notebooks:

conda install jupyter

# You may also want to install nb_conda (Enables some nice things like change virtual environments within the notebook)
conda install nb_conda

This repository requires the installation of a few extra packages, you can install them all at once with:

pip install -r requirements.txt

(Optional) jupyterthemes can be nice when presenting notebooks, as it offers some cleaner visual themes than the stock notebook, and makes it easy to adjust the default font size for code, markdown, etc. You can install with pip:

pip install jupyterthemes

Recommend jupyter them for presenting these notebook (type into terminal before launching notebook):

jt -t grade3 -cellw=90% -fs=20 -tfs=20 -ofs=20 -dfs=20

Recommend jupyter them for viewing these notebook (type into terminal before launching notebook):

jt -t grade3 -cellw=90% -fs=14 -tfs=14 -ofs=14 -dfs=14

Downloading Data

For larger files such as data and videos, I've provided download scripts to download these files from welchlabs.io. These files can be pretty big, so you may want to grab a cup of your favorite beverage to enjoy while downloading. The script can be run from within the jupyter notebooks or from the terminal:

python util/get_and_unpack.py -url http://www.welchlabs.io/unccv/the_original_problem/data/data.zip

Alternatively, you can download download data manually, unzip and place in this directory.

Downloading Videos

Run the script below or call it from the notebooks:

python util/get_and_unpack.py -url http://www.welchlabs.io/unccv/the_original_problem/videos.zip

Alternatively, you can download download videos manually, unzip and place in this directory.

Owner
Jaissruti Nanthakumar
Master's in Computer Science | University of North Carolina at Charlotte
Jaissruti Nanthakumar
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022