PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

Related tags

Deep Learningmoco-v3
Overview

MoCo v3 for Self-supervised ResNet and ViT

Introduction

This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

The original MoCo v3 was implemented in Tensorflow and run in TPUs. This repo re-implements in PyTorch and GPUs. Despite the library and numerical differences, this repo reproduces the results and observations in the paper.

Main Results

The following results are based on ImageNet-1k self-supervised pre-training, followed by ImageNet-1k supervised training for linear evaluation or end-to-end fine-tuning. All results in these tables are based on a batch size of 4096.

ResNet-50, linear classification

pretrain
epochs
pretrain
crops
linear
acc
100 2x224 68.9
300 2x224 72.8
1000 2x224 74.6

ViT, linear classification

model pretrain
epochs
pretrain
crops
linear
acc
ViT-Small 300 2x224 73.2
ViT-Base 300 2x224 76.7

ViT, end-to-end fine-tuning

model pretrain
epochs
pretrain
crops
e2e
acc
ViT-Small 300 2x224 81.4
ViT-Base 300 2x224 83.2

The end-to-end fine-tuning results are obtained using the DeiT repo, using all the default DeiT configs. ViT-B is fine-tuned for 150 epochs (vs DeiT-B's 300ep, which has 81.8% accuracy).

Usage: Preparation

Install PyTorch and download the ImageNet dataset following the official PyTorch ImageNet training code. Similar to MoCo v1/2, this repo contains minimal modifications on the official PyTorch ImageNet code. We assume the user can successfully run the official PyTorch ImageNet code. For ViT models, install timm (timm==0.4.9).

The code has been tested with CUDA 10.2/CuDNN 7.6.5, PyTorch 1.9.0 and timm 0.4.9.

Usage: Self-supervised Pre-Training

Below are three examples for MoCo v3 pre-training.

ResNet-50 with 2-node (16-GPU) training, batch 4096

On the first node, run:

python main_moco.py \
  --moco-m-cos --crop-min=.2 \
  --dist-url 'tcp://[your first node address]:[specified port]' \
  --multiprocessing-distributed --world-size 2 --rank 0 \
  [your imagenet-folder with train and val folders]

On the second node, run the same command with --rank 1. With a batch size of 4096, the training can fit into 2 nodes with a total of 16 Volta 32G GPUs.

ViT-Small with 1-node (8-GPU) training, batch 1024

python main_moco.py \
  -a vit_small -b 1024 \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

ViT-Base with 8-node training, batch 4096

With a batch size of 4096, ViT-Base is trained with 8 nodes:

python main_moco.py \
  -a vit_base \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://[your first node address]:[specified port]' \
  --multiprocessing-distributed --world-size 8 --rank 0 \
  [your imagenet-folder with train and val folders]

On other nodes, run the same command with --rank 1, ..., --rank 7 respectively.

Notes:

  1. The batch size specified by -b is the total batch size across all GPUs.
  2. The learning rate specified by --lr is the base lr, and is adjusted by the linear lr scaling rule in this line.
  3. Using a smaller batch size has a more stable result (see paper), but has lower speed. Using a large batch size is critical for good speed in TPUs (as we did in the paper).
  4. In this repo, only multi-gpu, DistributedDataParallel training is supported; single-gpu or DataParallel training is not supported. This code is improved to better suit the multi-node setting, and by default uses automatic mixed-precision for pre-training.

Usage: Linear Classification

By default, we use momentum-SGD and a batch size of 1024 for linear classification on frozen features/weights. This can be done with a single 8-GPU node.

python main_lincls.py \
  -a [architecture] --lr [learning rate] \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --pretrained [your checkpoint path]/[your checkpoint file].pth.tar \
  [your imagenet-folder with train and val folders]

Usage: End-to-End Fine-tuning ViT

To perform end-to-end fine-tuning for ViT, use our script to convert the pre-trained ViT checkpoint to DEiT format:

python convert_to_deit.py \
  --input [your checkpoint path]/[your checkpoint file].pth.tar \
  --output [target checkpoint file].pth

Then run the training (in the DeiT repo) with the converted checkpoint:

python $DEIT_DIR/main.py \
  --resume [target checkpoint file].pth \
  --epochs 150

This gives us 83.2% accuracy for ViT-Base with 150-epoch fine-tuning.

Note:

  1. We use --resume rather than --finetune in the DeiT repo, as its --finetune option trains under eval mode. When loading the pre-trained model, revise model_without_ddp.load_state_dict(checkpoint['model']) with strict=False.
  2. Our ViT-Small is with heads=12 in the Transformer block, while by default in DeiT it is heads=6. Please modify the DeiT code accordingly when fine-tuning our ViT-Small model.

Model Configs

See the commands listed in CONFIG.md.

Transfer Learning

See the instruction in the transfer dir.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Citation

@Article{chen2021mocov3,
  author  = {Xinlei Chen* and Saining Xie* and Kaiming He},
  title   = {An Empirical Study of Training Self-Supervised Vision Transformers},
  journal = {arXiv preprint arXiv:2104.02057},
  year    = {2021},
}
Owner
Facebook Research
Facebook Research
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022