Lab Materials for MIT 6.S191: Introduction to Deep Learning

Overview

banner

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available on the course website.

Opening the labs in Google Colaboratory:

The 2021 6.S191 labs will be run in Google's Colaboratory, a Jupyter notebook environment that runs entirely in the cloud, you don't need to download anything. To run these labs, you must have a Google account.

On this Github repo, navigate to the lab folder you want to run (lab1, lab2, lab3) and open the appropriate python notebook (*.ipynb). Click the "Run in Colab" link on the top of the lab. That's it!

Running the labs

Now, to run the labs, open the Jupyter notebook on Colab. Navigate to the "Runtime" tab --> "Change runtime type". In the pop-up window, under "Runtime type" select "Python 3", and under "Hardware accelerator" select "GPU". Go through the notebooks and fill in the #TODO cells to get the code to compile for yourself!

MIT Deep Learning package

You might notice that inside the labs we install the mitdeeplearning python package from the Python Package repository:

pip install mitdeeplearning

This package contains convienence functions that we use throughout the course and can be imported like any other Python package.

>>> import mitdeeplearning as mdl

We do this for you in each of the labs, but the package is also open source under the same license so you can also use it outside the class.

Lecture Videos

All lecture videos are available publicly online and linked above! Use and/or modification of lecture slides outside of 6.S191 must reference:

© MIT 6.S191: Introduction to Deep Learning

http://introtodeeplearning.com

License

All code in this repository is copyright 2021 MIT 6.S191 Introduction to Deep Learning. All Rights Reserved.

Licensed under the MIT License. You may not use this file except in compliance with the License. Use and/or modification of this code outside of 6.S191 must reference:

© MIT 6.S191: Introduction to Deep Learning

http://introtodeeplearning.com

Comments
  • Error

    Error

    Hey, Why am i having an error with this loc "import util.download_lung_data", is it correct?? I am getting an error of no module named util

    Thanks

    opened by arpita8 12
  • Docker images pull error

    Docker images pull error

    Hi amini, I'm trying to pull the docker images by this link DockerHub, it seems that there're some problems. I try docker pull mit6s191/iap2018 in terminal, it gives me this message:

    Using default tag: latest
    Error response from daemon: manifest for mit6s191/iap2018:latest not found
    

    then, I use docker pull mit6s191/iap2018:labs, it shows:

    error pulling image configuration: Get https://dseasb33srnrn.cloudfront.net/registry-v2/docker/registry/v2/blobs/sha256/48/48db1fb4c0b5d8aeb65b499c0623b057f6b50f93eed0e9cfb3f963b0c12a74db/data?Expires=1524752941&Signature=AKuwnCd69y-fs0NlLjQnAlBoUhbht-gWbIYIoIESf7dERzjlkeejUndYC1QCnEhjjlhZAvv2NWQFWEf-Efc6noGUV9hK4QRVaQqO23zRKRrqarTWVMLj5LQX4X1Qikze5YEXy4VqdNm5t88WRQsfDvsPHHDmKx6vqA2V4VgVDP8_&Key-Pair-Id=APKAJECH5M7VWIS5YZ6Q: net/http: TLS handshake timeout
    

    Could you please help to address this problem? Thank you.

    opened by ytzhao 9
  • Error while importing util

    Error while importing util

    I'm getting this error in most of the notebooks. Stacktrace in Colab ->

    ModuleNotFoundError Traceback (most recent call last) in () 14 15 # Import the necessary class-specific utility files for this lab ---> 16 import introtodeeplearning_labs as util

    /content/introtodeeplearning_labs/init.py in () ----> 1 from lab1 import * 2 from lab2 import * 3 # from lab3 import * 4 5

    ModuleNotFoundError: No module named 'lab1'

    opened by SarthakSG 5
  • can't play music though no error occurs

    can't play music though no error occurs

    I ran the code below with colab, but I didn't hear a sound. !pip install mitdeeplearning import mitdeeplearning as mdl

    songs = mdl.lab1.load_training_data() example_song = songs[0] mdl.lab1.play_song(example_song)

    opened by creater-yzl 4
  • invalid bind mount spec, invalid mode: /notebooks/introtodeeplearning_labs

    invalid bind mount spec, invalid mode: /notebooks/introtodeeplearning_labs

    I am trying to try the notebooks posted here as per the instructions given in the readme here as:

    sudo docker run -p 8888:8888 -p 6006:6006 -v https://github.com/aamini/introtodeeplearning_labs:/notebooks/introtodeeplearning_labs mit6s191/iap2018:labs

    when I get the error:

    docker: Error response from daemon: invalid bind mount spec "https://github.com/aamini/introtodeeplearning_labs:/notebooks/introtodeeplearning_labs": invalid mode: /notebooks/introtodeeplearning_labs.

    Am I missing the path for the repo?

    opened by sameermahajan 4
  • [Lab 2 / Part 2] Training dataset is missing

    [Lab 2 / Part 2] Training dataset is missing

    Regarding Section 2.2 of Lab2, Part2 - Debiasing, the training data hosted at https://www.dropbox.com/s/dl/bp54q547mfg15ze/train_face.h5 no longer exists. Thanks for the great class!

    opened by vivianliang 3
  • ModuleNotFoundError: No module named 'lab1'

    ModuleNotFoundError: No module named 'lab1'

    Hi, quick solution for importing this modules? ModuleNotFoundError Traceback (most recent call last) in () 8 from IPython import display as ipythondisplay 9 ---> 10 import introtodeeplearning_labs as util 11 12 is_correct_tf_version = '1.14.0' in tf.version

    /content/introtodeeplearning_labs/init.py in () ----> 1 from lab1 import * 2 from lab2 import * 3 # from lab3 import * 4 5

    opened by IngridJSJ 3
  • lab1/Part2 fails assertion for tf version 1.13.0 (Colab is on 1.13.1)

    lab1/Part2 fails assertion for tf version 1.13.0 (Colab is on 1.13.1)

    Running lab1/Part2_music_generation.ipynb fails at the beginning because it requests 1.13.0. Looks like Colab updated to 1.13.1 (I didn't do anything special).

    is_correct_tf_version = '1.13.0' in tf.__version__
    ...
    AssertionError: Wrong tensorflow version (1.13.1) installed
    

    Replacing that with this will work, unless that specific version is important:

    is_correct_tf_version = tf.__version__ >= '1.13.0'
    
    opened by MaxGhenis 3
  • Avoid colocate_with warning in lab1/part1 solution by using tf.add

    Avoid colocate_with warning in lab1/part1 solution by using tf.add

    lab1/Part1_tensorflow_solution.ipynb includes this code:

    def our_dense_layer(x, n_in, n_out):
      # ...
      z = tf.matmul(x,W) + b
    

    When this is called in the next cell, it produces this warning:

    WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/resource_variable_ops.py:642: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Colocations handled automatically by placer.
    tf.Tensor([[0.95257413 0.95257413 0.95257413]], shape=(1, 3), dtype=float32)
    

    This warning can be avoided by replacing the +b code segment with tf.add, i.e.

    z = tf.add(tf.matmul(x, W), b, name="z")
    

    (also more TensorFlow-y)

    opened by MaxGhenis 3
  • Lab1 - Part1 - Section 1.2:Error when using tf.constant to provide input to Keras model.predict

    Lab1 - Part1 - Section 1.2:Error when using tf.constant to provide input to Keras model.predict

    I am encountering an InvalidArgumentErrorerror when I use Keras model.predict with tf.constant as input. I am not sure whether it's because model.predict don't work with tf.constant or I am doing something wrong. It work fine when I use numpy array with same argument.

    # Define the number of inputs and outputs
    n_input_nodes = 2
    n_output_nodes = 3
    
    # First define the model 
    model = Sequential()
    
    '''TODO: Define a dense (fully connected) layer to compute z'''
    # Remember: dense layers are defined by the parameters W and b!
    # You can read more about the initialization of W and b in the TF documentation :) 
    dense_layer = Dense(n_output_nodes, input_shape=(n_input_nodes,),activation='sigmoid') # TODO 
    
    # Add the dense layer to the model
    model.add(dense_layer)
    

    Now when I do prediction using:

    # Test model with example input
    x_input = tf.constant([[1.0,2.]], shape=(1,2))
    '''TODO: feed input into the model and predict the output!'''
    print(model.predict(x_input)) # TODO
    

    I get following error:

    InvalidArgumentError: In[0] is not a matrix. Instead it has shape [2] [[{{node MatMul_3}}]] [Op:StatefulPartitionedCall]

    When I use Numpy array, it works:

    # Test model with example input
    x_input =np.array([[1.0,2.]])
    '''TODO: feed input into the model and predict the output!'''
    print(model.predict(x_input)) # TODO
    

    [[0.19114174 0.88079417 0.8062956 ]]

    Could you let me know if it is a tf issue. If so I can raise an issue on the tf repository.

    opened by sibyjackgrove 3
  • module 'mitdeeplearning.lab3' has no attribute 'pong_change'

    module 'mitdeeplearning.lab3' has no attribute 'pong_change'

    I'm doing the pong part of RL Lab I ran into this issue i've tried looking into all versions of mitdeeplearning i didn't find pong_change function can you fix this

    opened by babahadjsaid 2
  • Part2_Music_Generation: model prediction inputs

    Part2_Music_Generation: model prediction inputs

    Maybe this gets a little bit late, but I think this is also a good chance to say thank you to Alex and Ava for this great course.

    Here is my questions:

    When I went through Music_Generation codes, the answer here was quite confusing to me. Only one character passes to the model each time although it is updating but the previous information is missing. (I think this also part the reason why the songs generated are always invalid.)

    ~Pass the prediction along with the previous hidden state ~as the next inputs to the model input_eval = tf.expand_dims([predicted_id], 0)

    So I save the initial input and concatenate with each output as the next input. This makes more sense to me and the results start to be much better, but I'm not sure if I make something wrong or there are better ways, like taking the previous state as the next initializer state.

    out_eval = tf.expand_dims([predicted_id], 0) input_eval = tf.concat([input_eval, output_eval], 1)

    opened by maple24 0
  • [Lab 1 Part 1.1] A typo in the matrix indexes?

    [Lab 1 Part 1.1] A typo in the matrix indexes?

    The last matrix defined by the user in section 1.1 has to be a 2-d Tensor. Thus, it'll have a shape of (n, 2) or (2, n). The code in the Lab 1 notebook has:

    row_vector = matrix[1]
    column_vector = matrix[:,2]
    scalar = matrix[1, 2]
    

    This assumes the column-rank to be >=3. IMHO, it should instead be:

    row_vector = matrix[1]
    column_vector = matrix[:,1]
    scalar = matrix[0, 1]
    

    And assume the user will choose a (2,2) matrix as their solution.

    opened by datasith 1
  • Lab2: Part2_Debiasing Test Set Bias

    Lab2: Part2_Debiasing Test Set Bias

    Hello, I have a question on test set bias of the standard CNN model. After running cell #13 in Part2_Debiasing.ipynb, I see this histogram:

    Lab2_Cell13_Std_CNN_Test_Set_Bias

    Am I correct in interpreting that avg test set accuracy is ~65% for Light Female, ~70% for Light Male, ~82% for Dark Female, and ~90% for Dark Male?

    If training set has majority of data on light skinned female, I expected test set accuracy to be higher for that category. So, results of above hisogram are counter intuitive.

    What am I missing?

    --Rahul

    opened by rvh72 2
  • Unable to install on M1 Mac

    Unable to install on M1 Mac

    Getting the following output when attempting to install mitdeeplearning via pip on an M1 mac:

    % pip install mitdeeplearning
    DEPRECATION: Configuring installation scheme with distutils config files is deprecated and will no longer work in the near future. If you are using a Homebrew or Linuxbrew Python, please see discussion at https://github.com/Homebrew/homebrew-core/issues/76621
    Collecting mitdeeplearning
      Using cached mitdeeplearning-0.2.0.tar.gz (2.1 MB)
      Preparing metadata (setup.py) ... done
    Requirement already satisfied: numpy in /opt/homebrew/lib/python3.9/site-packages (from mitdeeplearning) (1.22.3)
    Collecting regex
      Downloading regex-2022.3.15-cp39-cp39-macosx_11_0_arm64.whl (281 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 281.8/281.8 KB 5.1 MB/s eta 0:00:00
    Collecting tqdm
      Using cached tqdm-4.64.0-py2.py3-none-any.whl (78 kB)
    Collecting gym
      Downloading gym-0.23.1.tar.gz (626 kB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 626.2/626.2 KB 17.9 MB/s eta 0:00:00
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Preparing metadata (pyproject.toml) ... done
    Collecting mitdeeplearning
      Downloading mitdeeplearning-0.1.2.tar.gz (2.1 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.1/2.1 MB 45.2 MB/s eta 0:00:00
      Preparing metadata (setup.py) ... done
      Downloading mitdeeplearning-0.1.1.tar.gz (2.1 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.1/2.1 MB 37.5 MB/s eta 0:00:00
      Preparing metadata (setup.py) ... done
      Downloading mitdeeplearning-0.1.0.tar.gz (2.1 MB)
         ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.1/2.1 MB 36.1 MB/s eta 0:00:00
      Preparing metadata (setup.py) ... done
    ERROR: Cannot install mitdeeplearning==0.1.0, mitdeeplearning==0.1.1, mitdeeplearning==0.1.2 and mitdeeplearning==0.2.0 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        mitdeeplearning 0.2.0 depends on tensorflow>=2.0.0a
        mitdeeplearning 0.1.2 depends on tensorflow>=2.0.0a
        mitdeeplearning 0.1.1 depends on tensorflow>=2.0.0a
        mitdeeplearning 0.1.0 depends on tensorflow>=2.0.0a
    
    To fix this you could try to:
    1. loosen the range of package versions you've specified
    2. remove package versions to allow pip attempt to solve the dependency conflict
    
    ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts
    
    ERROR: Could not find a version that satisfies the requirement tensorflow>=2.0.0a 
    

    Looking for a solution that allows the installation of this package. I'm using python3.9 and I have tensorflow-macos installed.

    opened by jackson-sandland 4
  • Lab 3-Fail to import module for event camera

    Lab 3-Fail to import module for event camera

    During running the following section in lab 3 on autonomous driving:

    import vista from vista.utils import logging logging.setLevel(logging.ERROR)

    I get an error:

    ::WARNING::[vista.entities.sensors.EventCamera.] Fail to import module for event camera. Remember to do source /openeb/build/utils/scripts/setup_env.shCan ignore this if not using it

    How to solve this problem?

    I try to continue , then in the following code section: camera = car.spawn_camera(config={'size': (200, 320)})

    I got GL error: GLError: GLError( err = 12290, baseOperation = eglMakeCurrent, cArguments = ( <OpenGL._opaque.EGLDisplay_pointer object at 0x7ff7681b5b90>, <OpenGL._opaque.EGLSurface_pointer object at 0x7ff768c97dd0>, <OpenGL._opaque.EGLSurface_pointer object at 0x7ff768c97dd0>, <OpenGL._opaque.EGLContext_pointer object at 0x7ff767f89290>, ), result = 0 )

    I use in Google Colab (and GPU) .

    opened by kerengold 2
Releases(v0.2.0)
Owner
Alexander Amini
Alexander Amini
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021