Convert Apple NeuralHash model for CSAM Detection to ONNX.

Overview

AppleNeuralHash2ONNX

Convert Apple NeuralHash model for CSAM Detection to ONNX.

Intro

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression. The steps of hashing is as the following:

  1. Convert image to RGB.
  2. Resize image to 360x360.
  3. Normalize RGB values to [-1, 1] range.
  4. Perform inference on the NeuralHash model.
  5. Calculate dot product of a 96x128 matrix with the resulting vector of 128 floats.
  6. Apply binary step to the resulting 96 float vector.
  7. Convert the vector of 1.0 and 0.0 to bits, resulting in 96-bit binary data.

In this project, we convert Apple's NeuralHash model to ONNX format. A demo script for testing the model is also included.

Prerequisite

OS

Both macOS and Linux will work. In the following sections Debian is used for Linux example.

LZFSE decoder

  • macOS: Install by running brew install lzfse.
  • Linux: Build and install from lzfse source.

Python

Python 3.6 and above should work. Install the following dependencies:

pip install onnx coremltools

Conversion Guide

Step 1: Get NeuralHash model

You will need 4 files from a recent macOS or iOS build:

  • neuralhash_128x96_seed1.dat
  • NeuralHashv3b-current.espresso.net
  • NeuralHashv3b-current.espresso.shape
  • NeuralHashv3b-current.espresso.weights

Option 1: From macOS or jailbroken iOS device (Recommended)

If you have a recent version of macOS (11.4+) or jailbroken iOS (14.7+) installed, simply grab these files from /System/Library/Frameworks/Vision.framework/Resources/ (on macOS) or /System/Library/Frameworks/Vision.framework/ (on iOS).

Option 2: From iOS IPSW (click to reveal)
  1. Download any .ipsw of a recent iOS build (14.7+) from ipsw.me.
  2. Unpack the file:
cd /path/to/ipsw/file
mkdir unpacked_ipsw
cd unpacked_ipsw
unzip ../*.ipsw
  1. Locate system image:
ls -lh

What you need is the largest .dmg file, for example 018-63036-003.dmg.

  1. Mount system image. On macOS simply open the file in Finder. On Linux run the following commands:
# Build and install apfs-fuse
sudo apt install fuse libfuse3-dev bzip2 libbz2-dev cmake g++ git libattr1-dev zlib1g-dev
git clone https://github.com/sgan81/apfs-fuse.git
cd apfs-fuse
git submodule init
git submodule update
mkdir build
cd build
cmake ..
make
sudo make install
sudo ln -s /bin/fusermount /bin/fusermount3
# Mount image
mkdir rootfs
apfs-fuse 018-63036-003.dmg rootfs

Required files are under /System/Library/Frameworks/Vision.framework/ in mounted path.

Put them under the same directory:

mkdir NeuralHash
cd NeuralHash
cp /System/Library/Frameworks/Vision.framework/Resources/NeuralHashv3b-current.espresso.* .
cp /System/Library/Frameworks/Vision.framework/Resources/neuralhash_128x96_seed1.dat .

Step 2: Decode model structure and shapes

Normally compiled Core ML models store structure in model.espresso.net and shapes in model.espresso.shape, both in JSON. It's the same for NeuralHash model but compressed with LZFSE.

dd if=NeuralHashv3b-current.espresso.net bs=4 skip=7 | lzfse -decode -o model.espresso.net
dd if=NeuralHashv3b-current.espresso.shape bs=4 skip=7 | lzfse -decode -o model.espresso.shape
cp NeuralHashv3b-current.espresso.weights model.espresso.weights

Step 3: Convert model to ONNX

cd ..
git clone https://github.com/AsuharietYgvar/TNN.git
cd TNN
python3 tools/onnx2tnn/onnx-coreml/coreml2onnx.py ../NeuralHash

The resulting model is NeuralHash/model.onnx.

Usage

Inspect model

Netron is a perfect tool for this purpose.

Calculate neural hash with onnxruntime

  1. Install required libraries:
pip install onnxruntime pillow
  1. Run nnhash.py on an image:
python3 nnhash.py /path/to/model.onnx /path/to/neuralhash_128x96_seed1.dat image.jpg

Example output:

ab14febaa837b6c1484c35e6

Note: Neural hash generated here might be a few bits off from one generated on an iOS device. This is expected since different iOS devices generate slightly different hashes anyway. The reason is that neural networks are based on floating-point calculations. The accuracy is highly dependent on the hardware. For smaller networks it won't make any difference. But NeuralHash has 200+ layers, resulting in significant cumulative errors.

Device Hash
iPad Pro 10.5-inch 2b186faa6b36ffcc4c4635e1
M1 Mac 2b5c6faa6bb7bdcc4c4731a1
iOS Simulator 2b5c6faa6bb6bdcc4c4731a1
ONNX Runtime 2b5c6faa6bb6bdcc4c4735a1

Credits

  • nhcalc for uncovering NeuralHash private API.
  • TNN for compiled Core ML to ONNX script.
Owner
Asuhariet Ygvar
Asuhariet Ygvar
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022