Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

Overview

Chunked Autoregressive GAN (CARGAN)

PyPI License Downloads

Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis [paper] [companion website]

Table of contents

Installation

pip install cargan

Configuration

All configuration is performed in cargan/constants.py. The default configuration is CARGAN. Additional configuration files for experiments described in our paper can be found in config/.

Inference

CLI

Infer from an audio files on disk. audio_files and output_files can be lists of files to perform batch inference.

python -m cargan \
    --audio_files 
   
     \
    --output_files 
    
      \
    --checkpoint 
     
       \
    --gpu 
      

      
     
    
   

Infer from files of features on disk. feature_files and output_files can be lists of files to perform batch inference.

python -m cargan \
    --feature_files 
   
     \
    --output_files 
    
      \
    --checkpoint 
     
       \
    --gpu 
      

      
     
    
   

API

cargan.from_audio

"""Perform vocoding from audio

Arguments
    audio : torch.Tensor(shape=(1, samples))
        The audio to vocode
    sample_rate : int
        The audio sample rate
    gpu : int or None
        The index of the gpu to use

Returns
    vocoded : torch.Tensor(shape=(1, samples))
        The vocoded audio
"""

cargan.from_audio_file_to_file

"""Perform vocoding from audio file and save to file

Arguments
    audio_file : Path
        The audio file to vocode
    output_file : Path
        The location to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

cargan.from_audio_files_to_files

"""Perform vocoding from audio files and save to files

Arguments
    audio_files : list(Path)
        The audio files to vocode
    output_files : list(Path)
        The locations to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

cargan.from_features

"""Perform vocoding from features

Arguments
    features : torch.Tensor(shape=(1, cargan.NUM_FEATURES, frames)
        The features to vocode
    gpu : int or None
        The index of the gpu to use

Returns
    vocoded : torch.Tensor(shape=(1, cargan.HOPSIZE * frames))
        The vocoded audio
"""

cargan.from_feature_file_to_file

"""Perform vocoding from feature file and save to disk

Arguments
    feature_file : Path
        The feature file to vocode
    output_file : Path
        The location to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

cargan.from_feature_files_to_files

"""Perform vocoding from feature files and save to disk

Arguments
    feature_files : list(Path)
        The feature files to vocode
    output_files : list(Path)
        The locations to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

Reproducing results

For the following subsections, the arguments are as follows

  • checkpoint - Path to an existing checkpoint on disk
  • datasets - A list of datasets to use. Supported datasets are vctk, daps, cumsum, and musdb.
  • gpu - The index of the gpu to use
  • gpus - A list of indices of gpus to use for distributed data parallelism (DDP)
  • name - The name to give to an experiment or evaluation
  • num - The number of samples to evaluate

Download

Downloads, unzips, and formats datasets. Stores datasets in data/datasets/. Stores formatted datasets in data/cache/.

python -m cargan.data.download --datasets 
   

   

vctk must be downloaded before cumsum.

Preprocess

Prepares features for training. Features are stored in data/cache/.

python -m cargan.preprocess --datasets 
   
     --gpu 
    

    
   

Running this step is not required for the cumsum experiment.

Partition

Partitions a dataset into training, validation, and testing partitions. You should not need to run this, as the partitions used in our work are provided for each dataset in cargan/assets/partitions/.

python -m cargan.partition --datasets 
   

   

The optional --overwrite flag forces the existing partition to be overwritten.

Train

Trains a model. Checkpoints and logs are stored in runs/.

python -m cargan.train \
    --name 
   
     \
    --datasets 
    
      \
    --gpus 
     

     
    
   

You can optionally specify a --checkpoint option pointing to the directory of a previous run. The most recent checkpoint will automatically be loaded and training will resume from that checkpoint. You can overwrite a previous training by passing the --overwrite flag.

You can monitor training via tensorboard as follows.

tensorboard --logdir runs/ --port 
   

   

Evaluate

Objective

Reports the pitch RMSE (in cents), periodicity RMSE, and voiced/unvoiced F1 score. Results are both printed and stored in eval/objective/.

python -m cargan.evaluate.objective \
    --name 
   
     \
    --datasets 
    
      \
    --checkpoint 
     
       \
    --num 
      
        \
    --gpu 
        
       
      
     
    
   

Subjective

Generates samples for subjective evaluation. Also performs benchmarking of inference speed. Results are stored in eval/subjective/.

python -m cargan.evaluate.subjective \
    --name 
   
     \
    --datasets 
    
      \
    --checkpoint 
     
       \
    --num 
      
        \
    --gpu 
        
       
      
     
    
   

Receptive field

Get the size of the (non-causal) receptive field of the generator. cargan.AUTOREGRESSIVE must be False to use this.

python -m cargan.evaluate.receptive_field

Running tests

pip install pytest
pytest

Citation

IEEE

M. Morrison, R. Kumar, K. Kumar, P. Seetharaman, A. Courville, and Y. Bengio, "Chunked Autoregressive GAN for Conditional Waveform Synthesis," Submitted to ICLR 2022, April 2022.

BibTex

@inproceedings{morrison2022chunked,
    title={Chunked Autoregressive GAN for Conditional Waveform Synthesis},
    author={Morrison, Max and Kumar, Rithesh and Kumar, Kundan and Seetharaman, Prem and Courville, Aaron and Bengio, Yoshua},
    booktitle={Submitted to ICLR 2022},
    month={April},
    year={2022}
}
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022