PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Related tags

Deep LearningPClean
Overview

PClean

Build Status

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

Warning: This is a rapidly evolving research prototype.

PClean was created at the MIT Probabilistic Computing Project.

If you use PClean in your research, please cite the our 2021 AISTATS paper:

PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming. Lew, A. K.; Agrawal, M.; Sontag, D.; and Mansinghka, V. K. (2021, March). In International Conference on Artificial Intelligence and Statistics (pp. 1927-1935). PMLR. (pdf)

Using PClean

To use PClean, create a Julia file with the following structure:

using PClean
using DataFrames: DataFrame
import CSV

# Load data
data = CSV.File(filepath) |> DataFrame

# Define PClean model
PClean.@model MyModel begin
    @class ClassName1 begin
        ...
    end

    ...
    
    @class ClassNameN begin
        ...
    end
end

# Align column names of CSV with variables in the model.
# Format is ColumnName CleanVariable DirtyVariable, or, if
# there is no corruption for a certain variable, one can omit
# the DirtyVariable.
query = @query MyModel.ClassNameN [
  HospitalName hosp.name             observed_hosp_name
  Condition    metric.condition.desc observed_condition
  ...
]

# Configure observed dataset
observations = [ObservedDataset(query, data)]

# Configuration
config = PClean.InferenceConfig(1, 2; use_mh_instead_of_pg=true)

# SMC initialization
state = initialize_trace(observations, config)

# Rejuvenation sweeps
run_inference!(state, config)

# Evaluate accuracy, if ground truth is available
ground_truth = CSV.File(filepath) |> CSV.DataFrame
results = evaluate_accuracy(data, ground_truth, state, query)

# Can print results.f1, results.precision, results.accuracy, etc.
println(results)

# Even without ground truth, can save the entire latent database to CSV files:
PClean.save_results(dir, dataset_name, state, observations)

Then, from this directory, run the Julia file.

JULIA_PROJECT=. julia my_file.jl

To learn to write a PClean model, see our paper, but note the surface syntax changes described below.

Differences from the paper

As a DSL embedded into Julia, our implementation of the PClean language has some differences, in terms of surface syntax, from the stand-alone syntax presented in our paper:

(1) Instead of latent class C ... end, we write @class C begin ... end.

(2) Instead of subproblem begin ... end, inference hints are given using ordinary Julia begin ... end blocks.

(3) Instead of parameter x ~ d(...), we use @learned x :: D{...}. The set of distributions D for parameters is somewhat restricted.

(4) Instead of x ~ d(...) preferring E, we write x ~ d(..., E).

(5) Instead of observe x as y, ... from C, write @query ModelName.C [x y; ...]. Clauses of the form x z y are also allowed, and tell PClean that the model variable C.z represents a clean version of x, whose observed (dirty) version is modeled as C.y. This is used when automatically reconstructing a clean, flat dataset.

The names of built-in distributions may also be different, e.g. AddTypos instead of typos, and ProportionsParameter instead of dirichlet.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022