Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

Overview

AgentFormer

This repo contains the official implementation of our paper:

AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting
Ye Yuan, Xinshuo Weng, Yanglan Ou, Kris Kitani
ICCV 2021
[website] [paper]

Overview

Loading AgentFormer Overview

Important Note

We have recently noticed a normalization bug in the code and after fixing it, the performance of our method is worse than the original numbers reported in the ICCV paper. For comparision, please use the correct numbers in the updated arXiv version.

Installation

Environment

  • Tested OS: MacOS, Linux
  • Python >= 3.7
  • PyTorch == 1.8.0

Dependencies:

  1. Install PyTorch 1.8.0 with the correct CUDA version.
  2. Install the dependencies:
    pip install -r requirements.txt
    

Datasets

  • For the ETH/UCY dataset, we already included a converted version compatible with our dataloader under datasets/eth_ucy.
  • For the nuScenes dataset, the following steps are required:
    1. Download the orignal nuScenes dataset. Checkout the instructions here.
    2. Follow the instructions of nuScenes prediction challenge. Download and install the map expansion.
    3. Run our script to obtain a processed version of the nuScenes dataset under datasets/nuscenes_pred:
      python data/process_nuscenes.py --data_root <PATH_TO_NUSCENES>
      

Pretrained Models

  • You can download pretrained models from Google Drive or BaiduYun (password: 9rvb) to reproduce the numbers in the paper.
  • Once the agentformer_models.zip file is downloaded, place it under the root folder of this repo and unzip it:
    unzip agentformer_models.zip
    
    This will place the models under the results folder. Note that the pretrained models directly correspond to the config files in cfg.

Evaluation

ETH/UCY

Run the following command to test pretrained models for the ETH dataset:

python test.py --cfg eth_agentformer --gpu 0

You can replace eth with {hotel, univ, zara1, zara2} to test other datasets in ETH/UCY. You should be able to get the numbers reported in the paper as shown in this table:

Ours ADE FDE
ETH 0.45 0.75
Hotel 0.14 0.22
Univ 0.25 0.45
Zara1 0.18 0.30
Zara2 0.14 0.24
Avg 0.23 0.39

nuScenes

Run the following command to test pretrained models for the nuScenes dataset:

python test.py --cfg nuscenes_5sample_agentformer --gpu 0

You can replace 5sample with 10sample to compute all the metrics (ADE_5, FDE_5, ADE_10, FDE_10). You should be able to get the numbers reported in the paper as shown in this table:

ADE_5 FDE_5 ADE_10 FDE_10
Ours 1.856 3.889 1.452 2.856

Training

You can train your own models with your customized configs. Here we take the ETH dataset as an example, but you can train models for other datasets with their corresponding configs. AgentFormer requires two-stage training:

  1. Train the AgentFormer VAE model (everything but the trajectory sampler):
    python train.py --cfg user_eth_agentformer_pre --gpu 0
    
  2. Once the VAE model is trained, train the AgentFormer DLow model (trajectory sampler):
    python train.py --cfg user_eth_agentformer --gpu 0
    
    Note that you need to change the pred_cfg field in user_eth_agentformer to the config you used in step 1 (user_eth_agentformer_pre) and change the pred_epoch to the VAE model epoch you want to use.

Citation

If you find our work useful in your research, please cite our paper AgentFormer:

@inproceedings{yuan2021agent,
  title={AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting},
  author={Yuan, Ye and Weng, Xinshuo and Ou, Yanglan and Kitani, Kris},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

License

Please see the license for further details.

Owner
Ye Yuan
PhD student at Robotics Institute, CMU
Ye Yuan
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022