GNEE - GAT Neural Event Embeddings

Related tags

Deep LearningGNEE
Overview

GNEE - GAT Neural Event Embeddings

This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Semi-Supervised Graph Attention Networks for Event Representation Learning".

Abstract: Event analysis from news and social networks is very useful for a wide range of social studies and real-world applications. Recently, event graphs have been explored to represent event datasets and their complex relationships, where events are vertices connected to other vertices that represent locations, people's names, dates, and various other event metadata. Graph representation learning methods are promising for extracting latent features from event graphs to enable the use of different classification algorithms. However, existing methods fail to meet important requirements for event graphs, such as (i) dealing with semi-supervised graph embedding to take advantage of some labeled events, (ii) automatically determining the importance of the relationships between event vertices and their metadata vertices, as well as (iii) dealing with the graph heterogeneity. In this paper, we present GNEE (GAT Neural Event Embeddings), a method that combines Graph Attention Networks and Graph Regularization. First, an event graph regularization is proposed to ensure that all graph vertices receive event features, thereby mitigating the graph heterogeneity drawback. Second, semi-supervised graph embedding with self-attention mechanism considers existing labeled events, as well as learns the importance of relationships in the event graph during the representation learning process. A statistical analysis of experimental results with five real-world event graphs and six graph embedding methods shows that GNEE obtains state-of-the-art results.

File Structure

Our method consists of a BERT text encoding and a pre-processment procedure followed by modified version of GAT (Veličković et. al - 2017, https://arxiv.org/abs/1710.10903) to the event embedding task.

In our work, we adopt and modify the PyTorch implementation of GAT, pyGAT, developed by Diego999.

.
├── datasets_runs/ -> Datasets used
├── event_graph_utils.py -> Useful functions when working with event datasets
├── layers.py -> Implementation of Graph Attention layers
├── LICENSE
├── main.py -> Execute this script to reproduce our experiments (refer to our paper for more details)
├── models.py -> Implementation of the original GAT model
├── notebooks -> Run these notebooks to reproduce all our experiments.
├── README.md
├── requirements.txt
├── train.py -> Implementation of our preprocessing, traning and testing pipelines
└── utils.py -> Useful functions used in GAT original implementation.

Reproducibility Notebooks

./notebooks
├── DeepWalk_Event_Embeddings.ipynb -> DeepWalk Benchmark
├── GAT_Event_Embeddings_+_Without_Regularization.ipynb -> GAT w/o embeddings benchmark
├── GCN_Event_Embeddings_.ipynb -> GCN Benchmark
├── GNEE_Attention_Matrices_Example.ipynb -> GNEE Attention matrices visualization
├── GNEE_Embedding_Visualization_t_SNE.ipynb -> GNEE Embeddings visualization using t-SNE
├── GNEE.ipynb -> GNEE Benchmark
├── Label_Propagation_Event_Classification.ipynb -> LP Benchmark
├── LINE_Event_Embeddings.ipynb -> LINE Benchmark
├── Node2Vec_Event_Embeddings.ipynb -> Node2Vec Benchmark
├── SDNE_Event_Embeddings.ipynb -> SDNE Benchmark
└── Struct2Vec_Event_Embeddings.ipynb -> Struct2Vec Benchmark

Hardware requirements

When running on "dense" mode (no --sparse flag), our model uses about 18 GB on GRAM. On the other hand, the sparse mode (using --sparse) uses less than 1.5 GB on GRAM, which is an ideal setup to environments such as Google Colab.

Issues/Pull Requests/Feedbacks

Please, contact the authors in case of issues / pull requests / feedbacks :)

Owner
João Pedro Rodrigues Mattos
Undergraduate Research Assistant, sponsored by FAPESP - Machine Learning | Web Development | Human Computer Interface
João Pedro Rodrigues Mattos
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022