Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Overview

Federated Distance (FedDist)

This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison" and the code of federated learning experiments by Sannara Ek during his master thesis.

Overview


This experiments compares 3 federated learning algorithms along with a new one, FedDist. The FedDist algorithm incorporates a pair-wise distance scheme for identifying outlier-like neurons/filters. These outlier-like neurons/filter may be in fact features learned from sparse data and so it is directly added to the server model for the next round of training.

Core Dependencies (tested and stable)


  • Tensorflow 2.2.2
  • PyTorch 1.1
  • scikit-learn 0.22.1

All the working scripts are presented in a Jupiter notebook file format.

There is an array of 3rd party packages that is necessary for the entirety of the scripts to run. It is recommended to run command "pip3 install -r requirements.txt" in your virtual environment and working directory to replicate the environments used in this experiment.

!Note! Visual Studio is required to solve dependency problems when working on a Windows Machine

Data Preparation


"DATA_UCI.ipynb" and "DATA_REALWORLD_SPLITSUB.ipynb" are respectively used to prepare the UCI and REALWORLD dataset for training. Simply run all cells in a Jupyter notebook. The formatted dataset will be placed in a new directory "datasetStand"

FL script implementations


The FedAvg and FedPer implementations are found in the file "FedAvg_FedPer.ipynb". You must specify which algorithm you which to run in the third cell of the notebook by changing the "algorithm" variable to either "FEDAVG" or "FEDPER"

FedDist is found in the "FedDist.ipynb" file.

FedMA is found in the "FedMA.ipynb" file.

For all the federated algorithms, the third cell gives a variety of options and testing environment to choose from. We recommend leaving the configuration in default other than changing the "algorithm" variable and specifying the GPU/CPU to use. Simply run all cells to start training.

If preferred to run as a python script, convert the files to a .py format VIA Jupiter notebook (FILES -> Download as -> Python (.py)).

Additionally with the command below from a console achieves the same result:

jupyter nbconvert --to script '[ScriptName].ipynb'

Simply specify the wanted parameters in the third cell beforehand.

Results Interpretability


All results of each experiments shall generate the "savedModels" folder. Within this folder will contain subfolders with the name of the chosen configuration and model architecture of the experiment. Additionally, within each model architecture folder will contain the another subfolder with the name of the dataset used for the experiment. E.g a directory should appear like:

./savedModels/FED_5C_10LE_50CR_400D_100D_BALANCED/UCI

Now within this folder:

The final server model is saved in a .h5 format. The recorded training statistics foreach communication round, such as the accuracy and loss of the clients model and server model, are stored in the trainingStats folder. The results regarding the Global accuracy and the detail of the server model can be found on the generated Server-Measure.csv file. Results for the Personalization accuracy can be found in the indivualClients Measure.csv file and finally the Generalization accuracy can be found at the AllClientsMeasure.csv file.

Sample script sequence:


An example of execution would be to first download and format the dataset (UCI and REALWORLD) then execute one of the FL algorithms (requires several days on CPU).

1.DATA_UCI.ipynb
2.DATA_REALWORLD_SPLITSUB.ipynb
3.FedAvg_FedPer.ipynb/FedDist.ipynb/FedMA.ipynb

Citing this work:


@INPROCEEDINGS{Lala2103:Federated,
AUTHOR="Sannara Ek and François Portet and Philippe Lalanda and German Vega",
TITLE="A Federated Learning Aggregation Algorithm for Pervasive Computing:
Evaluation and Comparison",
BOOKTITLE="2021 IEEE International Conference on Pervasive Computing and
Communications (PerCom) (PerCom 2021)",
ADDRESS="Kassel, Germany",
DAYS=21,
MONTH=mar,
YEAR=2021,
KEYWORDS="Federated Learning; Edge Computing; Human activity recognition"
}

Contact:


Please contact the authors by [firstname].[lastname]@univ-grenoble-alpes.fr if you have issues with the code.

To contact Sannara Ek, Please use [firstname].[lastname]@gmail.com

Owner
GETALP
Study Group for Machine Translation and Automated Processing of Languages and Speech
GETALP
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022