Simulating Sycamore quantum circuits classically using tensor network algorithm.

Overview

Simulating the Sycamore quantum supremacy circuit

This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with $n=53$ qubits, $m=20$ cycles using the tensor network method proposed in arXiv:2103.03074.

We plan to release the code soon.

Explanation of data

  1. data/circuit_n53_m20_s0_e0_pABCDCDAB.py is the circuit file which has been download from the Google's data repository for the Sycamore circuits.
  2. data/bipartition_n53_m20_s0_ABCD_s24_simplify_.txt is the initial bipartition of the simplified tensor network corresponding to Sycamore circuit with 53 qubits, 20 cycles, seed 0, elide 0 and ABCDCDAB sequence. There are two lines in the file, the first line indicates the tail partition which includes 21 open qubits, while the second line includes the head partition with 32 closed qubits. The simplification of the tensor network is done by sequentially contracting tensors with 2 or less dimensions.
  3. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_edges.txt contains the 23 slicing edges which splits the overall contraction task into $2^{23}$ subtasks, each of which has space complexity $2^{30}$ hence can be contracted using fit into 32G memory.
  4. data/n53_m20_s0_ABCD_s24_simplify_gpulimit_30_ordernew.txt includes the contraction order. For each edge in the contraction order, say $i, j$, the $i$th and $j$th tensor in the head partition will be contracted by tracing out the shared indices. Then the resulting tensor will be put back into the $i$th position.
  5. vector.pt contains the cut tensor of of the head partition whose overall dimension is $2^{23}$ and the annotations of corresponding dimensions. The file is saved using pytorch, one can use torch.load to load the data.
  6. The obtained $2^{21}$ samples for the Sycamore circuits with $n=53$ qubits and $m=20$ cycles and their probabilities and amplitudes are listed in probs.txt file. Notice that the configuration we assigned to all closed qubits are fixed to $\underbrace{0,0,0,\cdots,0}_{32}$, and the open qubit ids are 11, 12, 13, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 44, 45, 46.

Notice

We noticed that in our paper arXiv:2103.03074 we have a misprint in the first row of Tab.III, where the amplitude should be |amplitude|. Neverthless, we put the refined table below.

image-20210308101302534

The $2^{21}$ bitstrings with amplitudes and probabilities can be download here.

Owner
Feng Pan
PHD candidate on theoretical physics. Personal interest in learning theory by statistical physics approaches.
Feng Pan
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023