Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

Related tags

Deep LearningDDAMS
Overview

DDAMS

This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Preprint].

Requirements

  • We use Conda python 3.7 and strongly recommend that you create a new environment: conda create -n ddams python=3.7.
  • Run the following command: pip install -r requirements.txt.

Data

You can download data here, put the data under the project dir DDAMS/data/xxx.

  • data/ami
    • data/ami/ami: preprocessed meeting data
    • data/ami/ami_qg: pseudo summarization data.
    • data/ami/ami_reference: golden reference for test file.
  • data/icsi
    • data/icsi/icsi: preprocessed meeting data
    • data/icsi/icsi_qg: pseudo summarization data.
    • data/icsi/icsi_reference: golden reference for test file.
  • data/glove: pre-trained word embedding glove.6B.300d.txt.

Reproduce Results

You can follow the following steps to reproduce the best results in our paper.

download checkpoints

Download checkpoints here. Put the checkpoints, including AMI.pt and ICSI.pt, under the project dir DDAMS/models/xx.pt.

translate

Produce final summaries.

For AMI, we can get summaries/ami_summary.txt.

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/AMI.pt \
               -output summaries/ami_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI, we can get summaries/icsi_summary.txt.

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/ICSI.pt \
               -output summaries/icsi_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

remove tags

<t> and </t> will raise errors for ROUGE test. So we should first remove them. (following OpenNMT)

sed -i 's/ <\/t>//g' summaries/ami_summary.txt
sed -i 's/<t> //g' summaries/ami_summary.txt
sed -i 's/ <\/t>//g' summaries/icsi_summary.txt
sed -i 's/<t> //g' summaries/icsi_summary.txt

test rouge score

  • Change pyrouge.Rouge155() to your local path.

Output format >> ROUGE(1/2/L): xx.xx-xx.xx-xx.xx

python test_rouge.py -c summaries/ami_summary.txt
python test_rouge_icsi.py -c summaries/icsi_summary.txt

ROUGE score

You will get following ROUGE scores.

ROUGE-1 ROUGE-2 ROUGE-L
AMI 53.15 22.32 25.67
ICSI 40.41 11.02 19.18

From Scratch

For AMI

Preprocess

(1) Preprocess AMI dataset.

python preprocess.py -train_src data/ami/ami/train.src \
                     -train_tgt data/ami/ami/train.tgt \
                     -train_seg data/ami/ami/train.seg \
                     -train_speaker data/ami/ami/train.speaker \
                     -train_relation data/ami/ami/train.relation \
                     -valid_src data/ami/ami/valid.src \
                     -valid_tgt data/ami/ami/valid.tgt \
                     -valid_seg data/ami/ami/valid.seg \
                     -valid_speaker data/ami/ami/valid.speaker \
                     -valid_relation data/ami/ami/valid.relation \
                     -save_data data/ami/AMI \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/ami/AMI.vocab.pt \
-output_file data/ami/ami_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/ami/ami_qg/train.src \
                     -train_tgt data/ami/ami_qg/train.tgt \
                     -train_seg data/ami/ami_qg/train.seg \
                     -train_speaker data/ami/ami_qg/train.speaker \
                     -train_relation data/ami/ami_qg/train.relation \
                     -save_data data/ami/AMIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) we first pre-train our DDAMS on the pseudo summarization dataset.

  • run the following command to save config file (-save_config).
  • remove -save_config and rerun the command to start the training process.
CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_qg_pretrain/AMI_qg\
           -data data/ami/AMIQG \
           -speaker_type ami \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/ami/ami_embeddings.enc.pt \
           -pre_word_vecs_dec data/ami/ami_embeddings.dec.pt \
           -log_file logs/ami_qg_pretrain.txt \
           -save_config logs/ami_qg_pretrain.txt

(2) fine-tuning on AMI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_final/AMI \
           -data data/ami/AMI \
           -speaker_type ami \
           -train_from ami_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 500 \
           -decay_steps 500 \
           -log_file logs/ami_final.txt \
           -save_config logs/ami_final.txt

Translate

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI

Preprocess

(1) Preprocess ICSI dataset.

python preprocess.py -train_src data/icsi/icsi/train.src \
                     -train_tgt data/icsi/icsi/train.tgt \
                     -train_seg data/icsi/icsi/train.seg \
                     -train_speaker data/icsi/icsi/train.speaker \
                     -train_relation data/icsi/icsi/train.relation \
                     -valid_src data/icsi/icsi/valid.src \
                     -valid_tgt data/icsi/icsi/valid.tgt \
                     -valid_seg data/icsi/icsi/valid.seg \
                     -valid_speaker data/icsi/icsi/valid.speaker \
                     -valid_relation data/icsi/icsi/valid.relation \
                     -save_data data/icsi/ICSI \
                     -src_seq_length 20000 \
                     -src_seq_length_trunc 20000 \
                     -tgt_seq_length 700 \
                     -tgt_seq_length_trunc 700 \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/icsi/ICSI.vocab.pt \
-output_file data/icsi/icsi_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/icsi/icsi_qg/train.src \
                     -train_tgt data/icsi/icsi_qg/train.tgt \
                     -train_seg data/icsi/icsi_qg/train.seg \
                     -train_speaker data/icsi/icsi_qg/train.speaker \
                     -train_relation data/icsi/icsi_qg/train.relation \
                     -save_data data/icsi/ICSIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) pre-training.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_qg_pretrain/ICSI \
           -data data/icsi/ICSIQG \
           -speaker_type icsi \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/icsi/icsi_embeddings.enc.pt \
           -pre_word_vecs_dec data/icsi/icsi_embeddings.dec.pt \
           -log_file logs/icsi_qg_pretrain.txt \
           -save_config logs/icsi_qg_pretrain.txt

(2) fine-tuning on ICSI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_final/ICSI \
           -data data/icsi/ICSI \
           -speaker_type icsi \
           -train_from icsi_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 1000 \
           -decay_steps 100 \
           -save_checkpoint_steps 50 \
           -valid_steps 50 \
           -log_file logs/icsi_final.txt \
           -save_config logs/icsi_final.txt

Translate

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

Test Rouge

(1) Before ROUGE test, we should first remove special tags: .

sed -i 's/ <\/t>//g' xxx.txt
sed -i 's/<t> //g' xxx.txt

(2) Test rouge

python test_rouge.py -c summaries/xxx.txt
python test_rouge_icsi.py -c summaries/xxx.txt
Owner
xcfeng
Ph.D. candidate working on Summarization.
xcfeng
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022