Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

Related tags

Deep LearningDDAMS
Overview

DDAMS

This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Preprint].

Requirements

  • We use Conda python 3.7 and strongly recommend that you create a new environment: conda create -n ddams python=3.7.
  • Run the following command: pip install -r requirements.txt.

Data

You can download data here, put the data under the project dir DDAMS/data/xxx.

  • data/ami
    • data/ami/ami: preprocessed meeting data
    • data/ami/ami_qg: pseudo summarization data.
    • data/ami/ami_reference: golden reference for test file.
  • data/icsi
    • data/icsi/icsi: preprocessed meeting data
    • data/icsi/icsi_qg: pseudo summarization data.
    • data/icsi/icsi_reference: golden reference for test file.
  • data/glove: pre-trained word embedding glove.6B.300d.txt.

Reproduce Results

You can follow the following steps to reproduce the best results in our paper.

download checkpoints

Download checkpoints here. Put the checkpoints, including AMI.pt and ICSI.pt, under the project dir DDAMS/models/xx.pt.

translate

Produce final summaries.

For AMI, we can get summaries/ami_summary.txt.

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/AMI.pt \
               -output summaries/ami_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI, we can get summaries/icsi_summary.txt.

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model models/ICSI.pt \
               -output summaries/icsi_summary.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

remove tags

<t> and </t> will raise errors for ROUGE test. So we should first remove them. (following OpenNMT)

sed -i 's/ <\/t>//g' summaries/ami_summary.txt
sed -i 's/<t> //g' summaries/ami_summary.txt
sed -i 's/ <\/t>//g' summaries/icsi_summary.txt
sed -i 's/<t> //g' summaries/icsi_summary.txt

test rouge score

  • Change pyrouge.Rouge155() to your local path.

Output format >> ROUGE(1/2/L): xx.xx-xx.xx-xx.xx

python test_rouge.py -c summaries/ami_summary.txt
python test_rouge_icsi.py -c summaries/icsi_summary.txt

ROUGE score

You will get following ROUGE scores.

ROUGE-1 ROUGE-2 ROUGE-L
AMI 53.15 22.32 25.67
ICSI 40.41 11.02 19.18

From Scratch

For AMI

Preprocess

(1) Preprocess AMI dataset.

python preprocess.py -train_src data/ami/ami/train.src \
                     -train_tgt data/ami/ami/train.tgt \
                     -train_seg data/ami/ami/train.seg \
                     -train_speaker data/ami/ami/train.speaker \
                     -train_relation data/ami/ami/train.relation \
                     -valid_src data/ami/ami/valid.src \
                     -valid_tgt data/ami/ami/valid.tgt \
                     -valid_seg data/ami/ami/valid.seg \
                     -valid_speaker data/ami/ami/valid.speaker \
                     -valid_relation data/ami/ami/valid.relation \
                     -save_data data/ami/AMI \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/ami/AMI.vocab.pt \
-output_file data/ami/ami_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/ami/ami_qg/train.src \
                     -train_tgt data/ami/ami_qg/train.tgt \
                     -train_seg data/ami/ami_qg/train.seg \
                     -train_speaker data/ami/ami_qg/train.speaker \
                     -train_relation data/ami/ami_qg/train.relation \
                     -save_data data/ami/AMIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) we first pre-train our DDAMS on the pseudo summarization dataset.

  • run the following command to save config file (-save_config).
  • remove -save_config and rerun the command to start the training process.
CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_qg_pretrain/AMI_qg\
           -data data/ami/AMIQG \
           -speaker_type ami \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/ami/ami_embeddings.enc.pt \
           -pre_word_vecs_dec data/ami/ami_embeddings.dec.pt \
           -log_file logs/ami_qg_pretrain.txt \
           -save_config logs/ami_qg_pretrain.txt

(2) fine-tuning on AMI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model ami_final/AMI \
           -data data/ami/AMI \
           -speaker_type ami \
           -train_from ami_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 500 \
           -decay_steps 500 \
           -log_file logs/ami_final.txt \
           -save_config logs/ami_final.txt

Translate

CUDA_VISIBLE_DEVICES=X python translate.py -batch_size 1 \
               -src data/ami/ami/test.src \
               -tgt data/ami/ami/test.tgt \
               -seg data/ami/ami/test.seg \
               -speaker data/ami/ami/test.speaker \
               -relation data/ami/ami/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 280 \
               -max_length 450

For ICSI

Preprocess

(1) Preprocess ICSI dataset.

python preprocess.py -train_src data/icsi/icsi/train.src \
                     -train_tgt data/icsi/icsi/train.tgt \
                     -train_seg data/icsi/icsi/train.seg \
                     -train_speaker data/icsi/icsi/train.speaker \
                     -train_relation data/icsi/icsi/train.relation \
                     -valid_src data/icsi/icsi/valid.src \
                     -valid_tgt data/icsi/icsi/valid.tgt \
                     -valid_seg data/icsi/icsi/valid.seg \
                     -valid_speaker data/icsi/icsi/valid.speaker \
                     -valid_relation data/icsi/icsi/valid.relation \
                     -save_data data/icsi/ICSI \
                     -src_seq_length 20000 \
                     -src_seq_length_trunc 20000 \
                     -tgt_seq_length 700 \
                     -tgt_seq_length_trunc 700 \
                     -dynamic_dict \
                     -share_vocab \
                     -lower \
                     -overwrite

(2) Create pre-trained word embeddings.

python embeddings_to_torch.py -emb_file_both data/glove/glove.6B.300d.txt \
-dict_file data/icsi/ICSI.vocab.pt \
-output_file data/icsi/icsi_embeddings

(3) Preprocess pseudo summarization dataset.

python preprocess.py -train_src data/icsi/icsi_qg/train.src \
                     -train_tgt data/icsi/icsi_qg/train.tgt \
                     -train_seg data/icsi/icsi_qg/train.seg \
                     -train_speaker data/icsi/icsi_qg/train.speaker \
                     -train_relation data/icsi/icsi_qg/train.relation \
                     -save_data data/icsi/ICSIQG \
                     -lower \
                     -overwrite \
                     -shard_size 500 \
                     -dynamic_dict \
                     -share_vocab

Train

(1) pre-training.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_qg_pretrain/ICSI \
           -data data/icsi/ICSIQG \
           -speaker_type icsi \
           -batch_size 64 \
           -learning_rate 0.001 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -report_every 30 \
           -encoder_type hier3 \
           -global_attention general \
           -save_checkpoint_steps 500 \
           -start_decay_steps 1500 \
           -pre_word_vecs_enc data/icsi/icsi_embeddings.enc.pt \
           -pre_word_vecs_dec data/icsi/icsi_embeddings.dec.pt \
           -log_file logs/icsi_qg_pretrain.txt \
           -save_config logs/icsi_qg_pretrain.txt

(2) fine-tuning on ICSI.

CUDA_VISIBLE_DEVICES=X python train.py -save_model icsi_final/ICSI \
           -data data/icsi/ICSI \
           -speaker_type icsi \
           -train_from icsi_qg_pretrain/xxx.pt  \
           -reset_optim all \
           -batch_size 1 \
           -learning_rate 0.0005 \
           -share_embeddings \
           -share_decoder_embeddings \
           -copy_attn \
           -reuse_copy_attn \
           -encoder_type hier3 \
           -global_attention general \
           -dropout 0.5 \
           -attention_dropout 0.5 \
           -start_decay_steps 1000 \
           -decay_steps 100 \
           -save_checkpoint_steps 50 \
           -valid_steps 50 \
           -log_file logs/icsi_final.txt \
           -save_config logs/icsi_final.txt

Translate

CUDA_VISIBLE_DEVICES=x python translate.py -batch_size 1 \
               -src data/icsi/icsi/test.src \
               -seg data/icsi/icsi/test.seg \
               -speaker data/icsi/icsi/test.speaker \
               -relation data/icsi/icsi/test.relation \
               -beam_size 10 \
               -share_vocab \
               -dynamic_dict \
               -replace_unk \
               -model xxx.pt \
               -output xxx.txt \
               -block_ngram_repeat 3 \
               -gpu 0 \
               -min_length 400 \
               -max_length 550

Test Rouge

(1) Before ROUGE test, we should first remove special tags: .

sed -i 's/ <\/t>//g' xxx.txt
sed -i 's/<t> //g' xxx.txt

(2) Test rouge

python test_rouge.py -c summaries/xxx.txt
python test_rouge_icsi.py -c summaries/xxx.txt
Owner
xcfeng
Ph.D. candidate working on Summarization.
xcfeng
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022