Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

Related tags

Deep LearningMSAD
Overview

MSAD

Multi-Scale Aligned Distillation for Low-Resolution Detection

Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia


This project provides an implementation for the CVPR 2021 paper "Multi-Scale Aligned Distillation for Low-Resolution Detection" based on Detectron2. MSAD targets to detect objects using low-resolution instead of high-resolution image. MSAD could obtain comparable performance in high-resolution image size. Our paper use Slimmable Neural Networks as our pretrained weight.

Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions. We are noting that our code is checked in detectron2 V0.2.1 (commit version: be792b959bca9af0aacfa04799537856c7a92802) and pytorch 1.4.
  • Setup the dataset following the structure.
  • Copy this project to /path/to/detectron2/projects/MSAD
  • Download the slimmable networks in the github. The slimmable resnet50 pretrained weight link is here.
  • Set the "find_unused_parameters=True" in distributed training of your own detectron2. You could modify it in detectron2/engine/defaults.py.

Pretrained Weight

  • Move the pretrained weight to your target path
  • Modify the weight path in configs/Base-SLRESNET-FCOS.yaml

Teacher Training

To train teacher model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD teacher training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-T". one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file projects/MSAD/configs/SLR025-50-T.yaml --num-gpus 8 OUTPUT_DIR /data/SLR025-50-T 

Student Training

To train student model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD student training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-S". We assume the teacher weight is saved in the path "/data/SLR025-50-T/model_final.pth" one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file projects/MSAD/configs/MSAD-R50-S025-1x.yaml --num-gpus 8 MODEL.WEIGHTS /data/SLR025-50-T/model_final.pth OUTPUT_DIR MSAD-R50-S025-1x

Evaluation

To evaluate a teacher or student pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

or

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Results

We provide the results on COCO val set with pretrained models. In the following table, we define the backbone FLOPs as capacity. For brevity, we regard the FLOPs of Slimmable Resnet50 in width 1.0 and high resolution input (800,1333) as 1x. The metrics are reported in old-version detectron2. The new-version detectron will report higher loss value but it does not affect the final result.

Method Backbone Capacity Sched Width Role Resolution BoxAP download
FCOS Slimmable-R50 1.25x 1x 1.00 Teacher H & L 42.8 model | metrics
FCOS Slimmable-R50 0.25x 1x 1.00 Student L 39.9 model | metrics
FCOS Slimmable-R50 0.70x 1x 0.75 Teacher H & L 41.2 model | metrics
FCOS Slimmable-R50 0.14x 1x 0.75 Student L 38.8 model | metrics
FCOS Slimmable-R50 0.31x 1x 0.50 Teacher H & L 38.4 model | metrics
FCOS Slimmable-R50 0.06x 1x 0.50 Student L 35.7 model | metrics
FCOS Slimmable-R50 0.08x 1x 0.25 Teacher H & L 33.2 model | metrics
FCOS Slimmable-R50 0.02x 1x 0.25 Student L 30.3 model | metrics

Citing MSAD

Consider cite MSAD in your publications if it helps your research.

@article{qi2021msad,
  title={Multi-Scale Aligned Distillation for Low-Resolution Detection},
  author={Lu Qi, Jason Kuen, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Woosung Choi 63 Nov 14, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022