Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

Related tags

Deep LearningMSAD
Overview

MSAD

Multi-Scale Aligned Distillation for Low-Resolution Detection

Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia


This project provides an implementation for the CVPR 2021 paper "Multi-Scale Aligned Distillation for Low-Resolution Detection" based on Detectron2. MSAD targets to detect objects using low-resolution instead of high-resolution image. MSAD could obtain comparable performance in high-resolution image size. Our paper use Slimmable Neural Networks as our pretrained weight.

Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions. We are noting that our code is checked in detectron2 V0.2.1 (commit version: be792b959bca9af0aacfa04799537856c7a92802) and pytorch 1.4.
  • Setup the dataset following the structure.
  • Copy this project to /path/to/detectron2/projects/MSAD
  • Download the slimmable networks in the github. The slimmable resnet50 pretrained weight link is here.
  • Set the "find_unused_parameters=True" in distributed training of your own detectron2. You could modify it in detectron2/engine/defaults.py.

Pretrained Weight

  • Move the pretrained weight to your target path
  • Modify the weight path in configs/Base-SLRESNET-FCOS.yaml

Teacher Training

To train teacher model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD teacher training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-T". one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file projects/MSAD/configs/SLR025-50-T.yaml --num-gpus 8 OUTPUT_DIR /data/SLR025-50-T 

Student Training

To train student model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <projects/MSAD/configs/config.yaml> --num-gpus 8

For example, to launch MSAD student training (1x schedule) with Slimmable-ResNet-50 backbone in 0.25 width on 8 GPUs and save the model in the path "/data/SLR025-50-S". We assume the teacher weight is saved in the path "/data/SLR025-50-T/model_final.pth" one should execute:

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file projects/MSAD/configs/MSAD-R50-S025-1x.yaml --num-gpus 8 MODEL.WEIGHTS /data/SLR025-50-T/model_final.pth OUTPUT_DIR MSAD-R50-S025-1x

Evaluation

To evaluate a teacher or student pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/MSAD/train_net_T.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

or

cd /path/to/detectron2
python3 projects/MSAD/train_net_S.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Results

We provide the results on COCO val set with pretrained models. In the following table, we define the backbone FLOPs as capacity. For brevity, we regard the FLOPs of Slimmable Resnet50 in width 1.0 and high resolution input (800,1333) as 1x. The metrics are reported in old-version detectron2. The new-version detectron will report higher loss value but it does not affect the final result.

Method Backbone Capacity Sched Width Role Resolution BoxAP download
FCOS Slimmable-R50 1.25x 1x 1.00 Teacher H & L 42.8 model | metrics
FCOS Slimmable-R50 0.25x 1x 1.00 Student L 39.9 model | metrics
FCOS Slimmable-R50 0.70x 1x 0.75 Teacher H & L 41.2 model | metrics
FCOS Slimmable-R50 0.14x 1x 0.75 Student L 38.8 model | metrics
FCOS Slimmable-R50 0.31x 1x 0.50 Teacher H & L 38.4 model | metrics
FCOS Slimmable-R50 0.06x 1x 0.50 Student L 35.7 model | metrics
FCOS Slimmable-R50 0.08x 1x 0.25 Teacher H & L 33.2 model | metrics
FCOS Slimmable-R50 0.02x 1x 0.25 Student L 30.3 model | metrics

Citing MSAD

Consider cite MSAD in your publications if it helps your research.

@article{qi2021msad,
  title={Multi-Scale Aligned Distillation for Low-Resolution Detection},
  author={Lu Qi, Jason Kuen, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya Jia},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

Karbo 45 Dec 21, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022