Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

Overview

SW-CV-ModelZoo

Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset


Framework: TF/Keras 2.7

Training SQLite DB built using fire-egg's tools: https://github.com/fire-eggs/Danbooru2019

Currently training on Danbooru2021, 512px SFW subset (sans the rating:q images that had been included in the 2022-01-21 release of the dataset)

Reference:

Anonymous, The Danbooru Community, & Gwern Branwen; “Danbooru2021: A Large-Scale Crowdsourced and Tagged Anime Illustration Dataset”, 2022-01-21. Web. Accessed 2022-01-28 https://www.gwern.net/Danbooru2021


Journal

06/02/2022: great news crew! TRC allowed me to use a bunch of TPUs!

To make better use of this amount of compute I had to overhaul a number of components, so a bunch of things are likely to have fallen to bitrot in the process. I can only guarantee NFNet can work pretty much as before with the right arguments.
NFResNet changes should have left it retrocompatible with the previous version.
ResNet has been streamlined to be mostly in line with the Bag-of-Tricks paper (arXiv:1812.01187) with the exception of the stem. It is not compatible with the previous version of the code.

The training labels have been included in the 2021_0000_0899 folder for convenience.
The list of files used for training is going to be uploaded as a GitHub Release.

Now for some numbers:
compared to my previous best run, the one that resulted in NFNetL1V1-100-0.57141:

  • I'm using 1.86x the amount of images: 2.8M vs 1.5M
  • I'm training bigger models: 61M vs 45M params
  • ... in less time: 232 vs 700 hours of processor time
  • don't get me started on actual wall clock time
  • with a few amenities thrown in: ECA for channel attention, SiLU activation

And it's all thanks to the folks at TRC, so shout out to them!

I currently have a few runs in progress across a couple of dimensions:

  • effect of model size with NFNet L0/L1/L2, with SiLU and ECA for all three of them
  • effect of activation function with NFNet L0, with SiLU/HSwish/ReLU, no ECA

Once the experiments are over, the plan is to select the network definitions that lay on the Pareto curve between throughput and F1 score and release the trained weights.

One last thing.
I'd like to call your attention to the tools/cleanlab_stuff.py script.
It reads two files: one with the binarized labels from the database, the other with the predicted probabilities.
It then uses the cleanlab package to estimate whether if an image in a set could be missing a given label. At the end it stores its conclusions in a json file.
This file could, potentially, be used in some tool to assist human intervention to add the missing tags.

You might also like...
Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Hyperparameter Optimization for TensorFlow, Keras and PyTorch
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Releases(models_db2021_5500_2022_10_21)
  • models_db2021_5500_2022_10_21(Oct 21, 2022)

    ConvNext B, ViT B16
    Trained on Danbooru2021 512px SFW subset, modulos 0000-0899
    top 5500 tags (2021_0000_0899_5500/selected_tags.csv)
    alpha to white
    padding to make the image square is white
    channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | ConvNextBV1_09_25_2022_05h13m55s | B | 93.2M | 448 | 0.3673 | 0.6941 | | ViTB16_09_25_2022_04h53m38s | B16 | 90.5M | 448 | 0.3663 | 0.6918 |

    Source code(tar.gz)
    Source code(zip)
    ConvNextBV1_09_25_2022_05h13m55s.7z(322.58 MB)
    ViTB16_09_25_2022_04h53m38s.7z(312.96 MB)
  • convnexts_db2021_2022_03_22(Mar 22, 2022)

    ConvNext, T/S/B
    Trained on Danbooru2021 512px SFW subset, modulos 0000-0899
    alpha to white
    padding to make the image square is white
    channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | ConvNextBV1_03_10_2022_21h41m23s | B | 90.01M | 448 | 0.3372 | 0.6892 | | ConvNextSV1_03_11_2022_17h49m56s | S | 51.28M | 384 | 0.3301 | 0.6798 | | ConvNextTV1_03_05_2022_15h56m42s | T | 29.65M | 320 | 0.3259 | 0.6595 |

    Source code(tar.gz)
    Source code(zip)
    ConvNextBV1_03_10_2022_21h41m23s.7z(311.29 MB)
    ConvNextSV1_03_11_2022_17h49m56s.7z(177.36 MB)
    ConvNextTV1_03_05_2022_15h56m42s.7z(102.96 MB)
  • nfnets_db2021_2022_03_04(Mar 4, 2022)

    NFNet, L0/L1/L2 (based on timm Lx model definitions) Trained on Danbooru2021 512px SFW subset, modulos 0000-0899 alpha to white padding to make the image square is white channel order is BGR, input is 0...255, scaled to -1...1 within the model

    | run_name | definition_name | params_human | image_size | thres | F1 | |:---------------------------------|:------------------|:---------------|-------------:|--------:|-------:| | NFNetL2V1_02_20_2022_10h27m08s | L2 | 60.96M | 448 | 0.3231 | 0.6785 | | NFNetL1V1_02_17_2022_20h18m38s | L1 | 45.65M | 384 | 0.3259 | 0.6691 | | NFNetL0V1_02_10_2022_17h50m14s | L0 | 27.32M | 320 | 0.3190 | 0.6509 |

    Source code(tar.gz)
    Source code(zip)
    NFNetL0V1_02_10_2022_17h50m14s.7z(94.98 MB)
    NFNetL1V1_02_17_2022_20h18m38s.7z(157.97 MB)
    NFNetL2V1_02_20_2022_10h27m08s.7z(210.49 MB)
  • nfnet_tpu_training(Feb 6, 2022)

  • NFNetL1V1-100-0.57141(Dec 31, 2021)

    • NFNet, L1 (based on timm Lx model definitions), 100 epochs, F1 @ 0.4 at the end of the 100th epoch was 0.57141
    • Trained on Danbooru2020 512px SFW subset, modulos 0000-0599
    • 320px per side
    • alpha to white
    • padding to make the image square is white
    • channel order is BGR, scaled to 0-1
    • mixup alpha = 0.2 during epochs 76-100
    • analyze_metrics on Danbooru2020 original set, modulos 0984-0999: {'thres': 0.3485, 'F1': 0.6133, 'F2': 0.6133, 'MCC': 0.6094, 'A': 0.9923, 'R': 0.6133, 'P': 0.6133}
    • analyze_metrics on image IDs 4970000-5000000: {'thres': 0.3148, 'F1': 0.5942, 'F2': 0.5941, 'MCC': 0.5892, 'A': 0.9901, 'R': 0.5940, 'P': 0.5943}
    Source code(tar.gz)
    Source code(zip)
    NFNetL1V1-100-0.57141.7z(158.09 MB)
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022