Implementations of CNNs, RNNs, GANs, etc

Overview

Tensorflow Programs and Tutorials

This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also contain some experiments on cool papers that I read. Hopefully, the notebooks will be helpful to anyone reading!

  • CNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy.

  • Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

  • Convolutional Neural Networks - This notebook goes through a simple convolutional neural network implementation in Tensorflow. The model is very similar to the own described in the Tensorflow docs. Hopefully this notebook can give you a better understanding of what is necessary to create and train your own CNNs. For a more conceptual view of CNNs, check out my introductory blog post on them.

  • Generative Adversarial Networks - This notebook goes through the creation of a generative adversarial network. GANs are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.For more of a conceptual view of GANs, check out my blog post.

  • Linear and Logistic Regression - This notebook shows you how Tensorflow is not just a deep learning library, but is a library centered on numerical computation, which allows you to create classic machine learning models relatively easily. Linear regression and logistic regression are two of the most simple, yet useful models in all of machine learning.

  • Simple Neural Networks - This notebook shows you how to create simple 1 and 2 layer neural networks. We'll then see how these networks perform on MNIST, and look at the type of hyperparamters that affect a model's accuracy (network architecture, weight initialization, learning rate, etc)

  • Math in Tensorflow - This notebook introduces you to variables, constants, and placeholders in Tensorflow. It'll go into describing sessions, and showinng you how to perform typical mathematical operations and deal with large matrices.

  • Question Pair Classification with RNNs (Work in Progress) - This notebook looks at the newly released question pair dataset released by Quora a little earlier this year. It looks at the ways in which you can build a machine learning model to predict whether two sentences are duplicates of one another. Before running this notebook, it's very important to extract all the data. We'll run the following command to get our word vectors and training/testing matrices.

    tar -xvzf Data/Quora/QuoraData.tar.gz
  • SELU Nonlinearity - A recent paper titled "Self Normalizing Neural Networks" started getting a lot of buzz starting in June 2017. The main contribution of the paper was this new nonlinear activation function called a SELU (scaled exponential linear unit). We'll be looking at how this function performs in practice with simple neural nets and CNNs.

  • Sentiment Analysis with LSTMs - In this notebook, we'll be looking at how to apply deep learning techniques to the task of sentiment analysis. Sentiment analysis can be thought of as the exercise of taking a sentence, paragraph, document, or any piece of natural language, and determining whether that text's emotional tone is positive, negative or neutral. We'll look at why RNNs and LSTMs are the most popular choices for handling natural language processing tasks. Be sure to run the following commands to get our word vectors and training data.

    tar -xvzf Data/Sentiment/models.tar.gz
    tar -xvzf Data/Sentiment/training_data.tar.gz
  • Universal Approximation Theorem (Work in Progress) - The Universal Approximation Theorem states that any feed forward neural network with a single hidden layer can model any function. In this notebook, I'll go through a practical example of illustrating why this theorem works, and talk about what the implications are for when you're training your own neural networks. cough Overfitting cough

  • Learning to Model the XOR Function (Work in Progress) - XOR is one of the classic functions we see in machine learning theory textbooks. The significance is that we cannot fit a linear model to this function no matter how hard we try. In this notebook, you'll see proof of that, and you'll see how adding a simple hidden layer to the neural net can solve the problem.

Owner
Adit Deshpande
Engineering at Forward | UCLA CS '19
Adit Deshpande
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023