[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

Overview

RainNet — Official Pytorch Implementation

Sample image

Region-aware Adaptive Instance Normalization for Image Harmonization
Jun Ling, Han Xue, Li Song*, Rong Xie, Xiao Gu

Paper: link
Video: link


Table of Contents

  1. Introduction
  2. Preparation
  3. Usage
  4. Results
  5. Citation
  6. Acknowledgement

Introduction

This work treats image harmonization as a style transfer problem. In particular, we propose a simple yet effective Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground. With our settings, our RAIN module can be used as a drop-in module for existing image harmonization networks and is able to bring significant improvements. Extensive experiments on the existing image harmonization benchmark datasets shows the superior capability of the proposed method.

Preparation

1. Clone this repo:

git clone https://github.com/junleen/RainNet
cd RainNet

2. Requirements

  • Both Linux and Windows are supported, but Linux is recommended for compatibility reasons.
  • We have tested on Python 3.6 with PyTorch 1.4.0 and PyTorch 1.8.1+cu11.

install the required packages using pip:

pip3 install -r requirements.txt

or conda:

conda create -n rainnet python=3.6
conda activate rainnet
pip install -r requirements.txt

3. Prepare the data

  • Download iHarmony4 dataset and extract the images. Because the images are too big in the origianl dataset, we suggest you to resize the images (eg, 512x512, or 256x256) and save the resized images in your local device.
  • We provide the code in data/preprocess_iharmony4.py. For example, you can run:
    python data/preprocess_iharmony4.py --dir_iharmony4 <DIR_of_iHarmony4> --save_dir <SAVE_DIR> --image_size <IMAGE_SIZE>
    This will help you to resize the images to a fixed size, eg, <image_size, image_size>. If you want to keep the aspect ratio of the original images, please run:
    python data/preprocess_iharmony4.py --dir_iharmony4 <DIR_of_iHarmony4> --save_dir <SAVE_DIR> --image_size <IMAGE_SIZE> --keep_aspect_ratio

4. Download our pre-trained model

  • Download the pretrained model from Google Drive, and put net_G.pth in the directory checkpoints/experiment_train. You can also save the checkpoint in other directories and change the checkpoints_dir and name in /util/config.py accordingly.

Usage

1. Evaluation

We provide the code in evaluate.py, which supports the model evaluation in iHarmony4 dataset.

Run:

python evaluate.py --dataset_root <DATA_DIR> --save_dir evaluated --batch_size 16 --device cuda 

If you want to save the harmonized images, you can add --store_image at the end of the command. The evaluating results will be saved in the evaluated directory.

2. Testing with your own examples

In this project, we also provide the easy testing code in test.py to help you test on other cases. However, you are required to assign image paths in the file for each trial. For example, you can follow:

comp_path = 'examples/1.png' or ['examples/1.png', 'examples/2.png']
mask_path = 'examples/1-mask.png' or ['examples/1-mask.png', 'examples/2-mask.png']
real_path = 'examples/1-gt.png' or ['examples/1-gt.png', 'examples/2-gt.png']

If there is no groundtruth image, you can set real_path to None

3. Training your own model

Please update the command arguments in scripts/train.sh and run:

bash scripts/train.sh

Results

Comparison1 Comparison2

Citation

If you use our code or find this work useful for your future research, please kindly cite our paper:

@inproceedings{ling2021Rainnet,
    title     = {Region-aware Adaptive Instance Normalization for Image Harmonization}, 
    author    = {Ling, Jun and Xue, Han and Song, Li and Xie, Rong and Gu, Xiao}, 
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
    year      = {2021}
}

Acknowledgement

For some of the data modules and model functions used in this source code, we need to acknowledge the repo of DoveNet and pix2pix.

This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022