PyTorch trainer and model for Sequence Classification

Overview

PyTorch-trainer-and-model-for-Sequence-Classification

After cloning the repository, modify your training data so that the training data is a .csv file and it has 2 columns: Text and Label

In the below example, we will assume that our training data has 3 labels, the name of our training data file is train_data.csv

Example Usage

Import dependencies

import pandas as pd
import numpy as np
from transformers import AutoModel, AutoTokenizer, AutoConfig

from EarlyStopping import *
from modelling import *
from utils import *

Specify arguments

args.pretrained_path will be the path of our pretrained language model

class args:
    fold = 0
    pretrained_path = 'bert-base-uncased'
    max_length = 400
    train_batch_size = 16
    val_batch_size = 64
    epochs = 5
    learning_rate = 1e-5
    accumulation_steps = 2
    num_splits = 5

Create train and validation data

In this example we will train the model using cross-validation. We will split our training data into args.num_splits folds.

df = pd.read_csv('./train_data.csv')
df = create_k_folds(df, args.num_splits)

df_train = df[df['kfold'] == args.fold].reset_index(drop = True)
df_valid = df[df['kfold'] == args.fold].reset_index(drop = True)

Load the language model and its tokenizer

config = AutoConfig.from_pretrained(args.path)
tokenizer = AutoTokenizer.from_pretrained(args.path)
model_transformer = AutoModel.from_pretrained(args.path)

Prepare train and validation dataloaders

features = []
for i in range(len(df_train)):
    features.append(prepare_features(tokenizer, df_train.iloc[i, :].to_dict(), args.max_length))
    
train_dataset = CreateDataset(features)
train_dataloader = create_dataloader(train_dataset, args.train_batch_size, 'train')

features = []
for i in range(len(df_valid)):
    features.append(prepare_features(tokenizer, df_valid.iloc[i, :].to_dict(), args.max_length))
    
val_dataset = CreateDataset(features)
val_dataloader = create_dataloader(val_dataset, args.val_batch_size, 'val')

Use EarlyStopping and customize the score function

NOTE: The customized score function should have 2 parameters: the logits, and the actual label

def accuracy(logits, labels):
    logits = logits.detach().cpu().numpy()
    labels = labels.detach().cpu().numpy()
    pred_classes = np.argmax(logits * (1 / np.sum(logits, axis = -1)).reshape(logits.shape[0], 1), axis = -1)
    pred_classes = pred_classes.reshape(labels.shape)
    
    return np.sum(pred_classes == labels) / labels.shape[0]

es = EarlyStopping(mode = 'max', patience = 3, monitor = 'val_acc', out_path = 'model.bin')
es.monitor_score_function = accuracy

Create and train the model

Calling the fit method, the training process will begin

model = Model(config, model_transformer, num_labels = 3)
model.to('cuda')
num_train_steps = int(len(train_dataset) / args.train_batch_size * args.epochs)
model.fit(args.epochs, args.learning_rate, num_train_steps, args.accumulation_steps, 
          train_dataloader, val_dataloader, es)

NOTE: To complete the cross-validation training process, run the code above again with args.fold equals 1, 2, ..., args.num_splits - 1

Owner
NhanTieu
NhanTieu
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022