Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Overview

Video Autoencoder: self-supervised disentanglement of 3D structure and motion

This repository contains the code (in PyTorch) for the model introduced in the following paper:

Video Autoencoder: self-supervised disentanglement of 3D structure and motion
Zihang Lai, Sifei Liu, Alexi A. Efros, Xiaolong Wang
ICCV, 2021
[Paper] [Project Page] [12-min oral pres. video] [3-min supplemental video]

Figure

Citation

@inproceedings{Lai21a,
        title={Video Autoencoder: self-supervised disentanglement of 3D structure and motion},
        author={Lai, Zihang and Liu, Sifei and Efros, Alexei A and Wang, Xiaolong},
        booktitle={ICCV},
        year={2021}
}

Contents

  1. Introduction
  2. Data preparation
  3. Training
  4. Evaluation
  5. Pretrained model

Introduction

Figure We present Video Autoencoder for learning disentangled representations of 3D structure and camera pose from videos in a self-supervised manner. Relying on temporal continuity in videos, our work assumes that the 3D scene structure in nearby video frames remains static. Given a sequence of video frames as input, the Video Autoencoder extracts a disentangled representation of the scene including: (i) a temporally-consistent deep voxel feature to represent the 3D structure and (ii) a 3D trajectory of camera poses for each frame. These two representations will then be re-entangled for rendering the input video frames. Video Autoencoder can be trained directly using a pixel reconstruction loss, without any ground truth 3D or camera pose annotations. The disentangled representation can be applied to a range of tasks, including novel view synthesis, camera pose estimation, and video generation by motion following. We evaluate our method on several large-scale natural video datasets, and show generalization results on out-of-domain images.

Dependencies

The following dependencies are not strict - they are the versions that we use.

Data preparation

RealEstate10K:

  1. Download the dataset from RealEstate10K.
  2. Download videos from RealEstate10K dataset, decode videos into frames. You might find the RealEstate10K_Downloader written by cashiwamochi helpful. Organize the data files into the following structure:
RealEstate10K/
    train/
        0000cc6d8b108390.txt
        00028da87cc5a4c4.txt
        ...
    test/
        000c3ab189999a83.txt
        000db54a47bd43fe.txt
        ...
dataset/
    train/
        0000cc6d8b108390/
            52553000.jpg
            52586000.jpg
            ...
        00028da87cc5a4c4/
            ...
    test/
        000c3ab189999a83/
        ...
  1. Subsample the training set at one-third of the original frame-rate (so that the motion is sufficiently large). You can use scripts/subsample_dataset.py.
  2. A list of videos ids that we used (10K for training and 5K for testing) is provided here:
    1. Training video ids and testing video ids.
    2. Note: as time changes, the availability of videos could change.

Matterport 3D (this could be tricky):

  1. Install habitat-api and habitat-sim. You need to use the following repo version (see this SynSin issue for details):

    1. habitat-sim: d383c2011bf1baab2ce7b3cd40aea573ad2ddf71
    2. habitat-api: e94e6f3953fcfba4c29ee30f65baa52d6cea716e
  2. Download the models from the Matterport3D dataset and the point nav datasets. You should have a dataset folder with the following data structure:

    root_folder/
         mp3d/
             17DRP5sb8fy/
                 17DRP5sb8fy.glb  
                 17DRP5sb8fy.house  
                 17DRP5sb8fy.navmesh  
                 17DRP5sb8fy_semantic.ply
             1LXtFkjw3qL/
                 ...
             1pXnuDYAj8r/
                 ...
             ...
         pointnav/
             mp3d/
                 ...
    
  3. Walk-through videos for pretraining: We use a ShortestPathFollower function provided by the Habitat navigation package to generate episodes of tours of the rooms. See scripts/generate_matterport3d_videos.py for details.

  4. Training and testing view synthesis pairs: we generally follow the same steps as the SynSin data instruction. The main difference is that we precompute all the image pairs. See scripts/generate_matterport3d_train_image_pairs.py and scripts/generate_matterport3d_test_image_pairs.py for details.

###Replica:

  1. Testing view synthesis pairs: This procedure is similar to step 4 in Matterport3D - with only the specific dataset changed. See scripts/generate_replica_test_image_pairs.py for details.

Configurations

Finally, change the data paths in configs/dataset.yaml to your data location.

Pre-trained models

  • Pre-trained model (RealEstate10K): Link
  • Pre-trained model (Matterport3D): Link

Training:

Use this script:

CUDA_VISIBLE_DEVICES=0,1 python train.py --savepath log/train --dataset RealEstate10K

Some optional commands (w/ default value in square bracket):

  • Select dataset: --dataset [RealEstate10K]
  • Interval between clip frames: --interval [1]
  • Change clip length: --clip_length [6]
  • Increase/decrease lr step: --lr_adj [1.0]
  • For Matterport3D finetuning, you need to set --clip_length 2, because the data are pairs of images.

Evaluation:

1. Generate test results:

Use this script (for testing RealEstate10K):

CUDA_VISIBLE_DEVICES=0 python test_re10k.py --savepath log/model --resume log/model/checkpoint.tar --dataset RealEstate10K

or this script (for testing Matterport3D/Replica):

CUDA_VISIBLE_DEVICES=0 python test_mp3d.py --savepath log/model --resume log/model/checkpoint.tar --dataset Matterport3D

Some optional commands:

  • Select dataset: --dataset [RealEstate10K]
  • Max number of frames: --frame_limit [30]
  • Max number of sequences: --video_limit [100]
  • Use training set to evaluate: --train_set

Running this will generate a output folder where the results (videos and poses) save. If you want to visualize the pose, use packages for evaluation of odometry, such as evo. If you want to quantitatively evaluate the results, see 2.1, 2.2.

2.1 Quantitative Evaluation of synthesis results:

Use this script:

python eval_syn_re10k.py [OUTPUT_DIR] (for RealEstate10K)
python eval_syn_mp3d.py [OUTPUT_DIR] (for Matterport3D)

Optional commands:

  • Evaluate LPIPS: --lpips

2.2 Quantitative Evaluation of pose prediction results:

Use this script:

python eval_pose.py [POSE_DIR]

Contact

For any questions about the code or the paper, you can contact zihang.lai at gmail.com.

Owner
Working from home
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct

TensorLayer Community 159 Nov 22, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Kaggle: Cell Instance Segmentation

Kaggle: Cell Instance Segmentation The goal of this challenge is to detect cells in microscope images. with simple view on how many cels have been ann

Jirka Borovec 9 Aug 12, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022