The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

Overview

DAGAN

This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction published in IEEE Transactions on Medical Imaging (2018).
Guang Yang*, Simiao Yu*, et al.
(* equal contributions)

If you use this code for your research, please cite our paper.

@article{yang2018_dagan,
	author = {Yang, Guang and Yu, Simiao and Dong, Hao and Slabaugh, Gregory G. and Dragotti, Pier Luigi and Ye, Xujiong and Liu, Fangde and Arridge, Simon R. and Keegan, Jennifer and Guo, Yike and Firmin, David N.},
	journal = {IEEE Trans. Med. Imaging},
	number = 6,
	pages = {1310--1321},
	title = {{DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction}},
	volume = 37,
	year = 2018
}

If you have any questions about this code, please feel free to contact Simiao Yu ([email protected]).

Prerequisites

The original code is in python 3.5 under the following dependencies:

  1. tensorflow (v1.1.0)
  2. tensorlayer (v1.7.2)
  3. easydict (v1.6)
  4. nibabel (v2.1.0)
  5. scikit-image (v0.12.3)

Code tested in Ubuntu 16.04 with Nvidia GPU + CUDA CuDNN (whose version is compatible to tensorflow v1.1.0).

How to use

  1. Prepare data

    1. Data used in this work are publicly available from the MICCAI 2013 grand challenge (link). We refer users to register with the grand challenge organisers to be able to download the data.
    2. Download training and test data respectively into data/MICCAI13_SegChallenge/Training_100 and data/MICCAI13_SegChallenge/Testing_100 (We randomly included 100 T1-weighted MRI datasets for training and 50 datasets for testing)
    3. run 'python data_loader.py'
    4. after running the code, training/validation/testing data should be saved to 'data/MICCAI13_SegChallenge/' in pickle format.
  2. Download pretrained VGG16 model

    1. Download 'vgg16_weights.npz' from this link
    2. Save 'vgg16_weights.npz' into 'trained_model/VGG16'
  3. Train model

    1. run 'CUDA_VISIBLE_DEVICES=0 python train.py --model MODEL --mask MASK --maskperc MASKPERC' where you should specify MODEL, MASK, MASKPERC respectively:
    • MODEL: choose from 'unet' or 'unet_refine'
    • MASK: choose from 'gaussian1d', 'gaussian2d', 'poisson2d'
    • MASKPERC: choose from '10', '20', '30', '40', '50' (percentage of mask)
  4. Test trained model

    1. run 'CUDA_VISIBLE_DEVICES=0 python test.py --model MODEL --mask MASK --maskperc MASKPERC' where you should specify MODEL, MASK, MASKPERC respectively (as above).

Results

Please refer to the paper for the detailed results.

Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
CMP 414/765 course repository for Spring 2022 semester

CMP414/765: Artificial Intelligence Spring2021 This is the GitHub repository for course CMP 414/765: Artificial Intelligence taught at The City Univer

ch00226855 4 May 16, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022