🔪 Elimination based Lightweight Neural Net with Pretrained Weights

Overview

ELimNet

ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task

  • Removed top layers from pretrained EfficientNetB0 and ResNet18 to construct lightweight CNN model with less than 1M #params.
  • Assessed on Trash Annotations in Context(TACO) Dataset sampled for 6 classes with 20,851 images.
  • Compared performance with lightweight models generated with Optuna's Neural Architecture Search(NAS) constituted with same convolutional blocks.

Quickstart

Installation

# clone the repository
git clone https://github.com/snoop2head/elimnet

# fetch image dataset and unzip
!wget -cq https://aistages-prod-server-public.s3.amazonaws.com/app/Competitions/000081/data/data.zip
!unzip ./data.zip -d ./

Train

# finetune on the dataset with pretrained model
python train.py --model ./model/efficientnet_b0.yaml

# finetune on the dataset with ElimNet
python train.py --model ./model/efficientnet_b0_elim_3.yaml

Inference

# inference with the lastest ran model
python inference.py --model_dir ./exp/latest/

Performance

Performance is compared with (1) original pretrained model and (2) Optuna NAS constructed models with no pretrained weights.

  • Indicates that top convolutional layers eliminated pretrained CNN models outperforms empty Optuna NAS models generated with same convolutional blocks.
  • Suggests that eliminating top convolutional layers creates lightweight model that shows similar(or better) classifcation performance with original pretrained model.
  • Reduces parameters to 7%(or less) of its original parameters while maintaining(or improving) its performance. Saves inference time by 20% or more by eliminating top convolutional layters.

ELimNet vs Pretrained Models (Train)

[100 epochs] # of Parameters # of Layers Train Validation Test F1
Pretrained EfficientNet B0 4.0M 352 Loss: 0.43
Acc: 81.23%
F1: 0.84
Loss: 0.469
Acc: 82.17%
F1: 0.76
0.7493
EfficientNet B0 Elim 2 0.9M 245 Loss:0.652
Acc: 87.22%
F1: 0.84
Loss: 0.622
Acc: 87.22%
F1: 0.77
0.7603
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7349
Resnet18 11.17M 69 Loss: 0.578
Acc: 78.90%
F1: 0.76
Loss: 0.700
Acc: 76.17%
F1: 0.719
-
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-

ELimNet vs Pretrained Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Pretrained EfficientNet B0 4.0M 352 3.9s 4.0s 105.7s
EfficientNet B0 Elim 2 0.9M 245 4.1s 13.0s 83.4s
EfficientNet B0 Elim 3 0.30M 181 3.0s 9.0s 73.5s
Resnet18 11.17M 69 - - -
Resnet18 Elim 2 0.68M 37 - - -

ELimNet vs Empty Optuna NAS Models (Train)

[100 epochs] # of Parameters # of Layers Train Valid Test F1
Empty MobileNet V3 4.2M 227 Loss 0.925
Acc: 65.18%
F1: 0.58
Loss 0.993
Acc: 62.83%
F1: 0.56
-
Empty EfficientNet B0 1.3M 352 Loss 0.867
Acc: 67.28%
F1: 0.61
Loss 0.898
Acc: 66.80%
F1: 0.61
0.6337
Empty DWConv & InvertedResidualv3 NAS 0.08M 66 - Loss: 0.766
Acc: 71.71%
F1: 0.68
0.6740
Empty MBConv NAS 0.33M 141 Loss: 0.786
Acc: 70.72%
F1: 0.66
Loss: 0.866
Acc: 68.09%
F1: 0.62
0.6245
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7603

ELimNet vs Empty Optuna NAS Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Empty MobileNet V3 4.2M 227 4 13 -
Empty EfficientNet B0 1.3M 352 3.780 3.782 68.4s
Empty DWConv &
InvertedResidualv3 NAS
0.08M 66 1 3.5 61.1s
Empty MBConv NAS 0.33M 141 2.14 7.201 67.1s
Resnet18 Elim 2 0.68M 37 - - -
EfficientNet B0 Elim 3 0.30M 181 3.0s 9s 73.5s

Background & WiP

Background

Work in Progress

  • Will test the performance of replacing convolutional blocks with pretrained weights with a single convolutional layer without pretrained weights.
  • Will add ResNet18's inference time data and compare with Optuna's NAS constructed lightweight model.
  • Will test on pretrained MobileNetV3, MnasNet on torchvision with elimination based lightweight model architecture search.
  • Will be applied on other small datasets such as Fashion MNIST dataset and Plant Village dataset.

Others

  • "Empty" stands for model with no pretrained weights.
  • "EfficientNet B0 Elim 2" means 2 convolutional blocks have been eliminated from pretrained EfficientNet B0. Number next to "Elim" annotates how many convolutional blocks have been removed.
  • Table's performance illustrates best performance out of 100 epochs of finetuning on TACO Dataset.

Authors

Owner
snoop2head
break, compose, display
snoop2head
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022