Apache Flink

Overview

Apache Flink

Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities.

Learn more about Flink at https://flink.apache.org/

Features

  • A streaming-first runtime that supports both batch processing and data streaming programs

  • Elegant and fluent APIs in Java and Scala

  • A runtime that supports very high throughput and low event latency at the same time

  • Support for event time and out-of-order processing in the DataStream API, based on the Dataflow Model

  • Flexible windowing (time, count, sessions, custom triggers) across different time semantics (event time, processing time)

  • Fault-tolerance with exactly-once processing guarantees

  • Natural back-pressure in streaming programs

  • Libraries for Graph processing (batch), Machine Learning (batch), and Complex Event Processing (streaming)

  • Built-in support for iterative programs (BSP) in the DataSet (batch) API

  • Custom memory management for efficient and robust switching between in-memory and out-of-core data processing algorithms

  • Compatibility layers for Apache Hadoop MapReduce

  • Integration with YARN, HDFS, HBase, and other components of the Apache Hadoop ecosystem

Streaming Example

case class WordWithCount(word: String, count: Long)

val text = env.socketTextStream(host, port, '\n')

val windowCounts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .keyBy("word")
  .window(TumblingProcessingTimeWindow.of(Time.seconds(5)))
  .sum("count")

windowCounts.print()

Batch Example

case class WordWithCount(word: String, count: Long)

val text = env.readTextFile(path)

val counts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .groupBy("word")
  .sum("count")

counts.writeAsCsv(outputPath)

Building Apache Flink from Source

Prerequisites for building Flink:

  • Unix-like environment (we use Linux, Mac OS X, Cygwin, WSL)
  • Git
  • Maven (we recommend version 3.2.5 and require at least 3.1.1)
  • Java 8 or 11 (Java 9 or 10 may work)
git clone https://github.com/apache/flink.git
cd flink
mvn clean package -DskipTests # this will take up to 10 minutes

Flink is now installed in build-target.

NOTE: Maven 3.3.x can build Flink, but will not properly shade away certain dependencies. Maven 3.1.1 creates the libraries properly. To build unit tests with Java 8, use Java 8u51 or above to prevent failures in unit tests that use the PowerMock runner.

Developing Flink

The Flink committers use IntelliJ IDEA to develop the Flink codebase. We recommend IntelliJ IDEA for developing projects that involve Scala code.

Minimal requirements for an IDE are:

  • Support for Java and Scala (also mixed projects)
  • Support for Maven with Java and Scala

IntelliJ IDEA

The IntelliJ IDE supports Maven out of the box and offers a plugin for Scala development.

Check out our Setting up IntelliJ guide for details.

Eclipse Scala IDE

NOTE: From our experience, this setup does not work with Flink due to deficiencies of the old Eclipse version bundled with Scala IDE 3.0.3 or due to version incompatibilities with the bundled Scala version in Scala IDE 4.4.1.

We recommend to use IntelliJ instead (see above)

Support

Don’t hesitate to ask!

Contact the developers and community on the mailing lists if you need any help.

Open an issue if you found a bug in Flink.

Documentation

The documentation of Apache Flink is located on the website: https://flink.apache.org or in the docs/ directory of the source code.

Fork and Contribute

This is an active open-source project. We are always open to people who want to use the system or contribute to it. Contact us if you are looking for implementation tasks that fit your skills. This article describes how to contribute to Apache Flink.

About

Apache Flink is an open source project of The Apache Software Foundation (ASF). The Apache Flink project originated from the Stratosphere research project.

Owner
The Apache Software Foundation
The Apache Software Foundation
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
yufan 81 Dec 08, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023