Structured Data Gradient Pruning (SDGP)

Related tags

Deep Learningsdgp
Overview

Structured Data Gradient Pruning (SDGP)

Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by reducing the number of model parameters over the course of training. However, most weight pruning techniques generally does not speed up DNN training and can even require more iterations to reach model convergence. In this work, we propose a novel Structured Data Gradient Pruning (SDGP) method that can speed up training without impacting model convergence. This approach enforces a specific sparsity structure, where only N out of every M elements in a matrix can be nonzero, making it amenable to hardware acceleration. Modern accelerators such as the Nvidia A100 GPU support this type of structured sparsity for 2 nonzeros per 4 elements in a reduction. Assuming hardware support for 2:4 sparsity, our approach can achieve a 15-25% reduction in total training time without significant impact to performance.

Implementation Details

Check out sdgp.py for details on how the data gradients are pruned during backpropagation. To make the pruning more efficient under group-level sorting, we implemented our own CUDA kernel. This is tested only with CUDA 11.3 and PyTorch 1.10.2 using Python 3.9.

Training Configuration

Training generally follows the configuration details in the excellent ffcv library. To fit ImageNet in a system with 256 GB of RAM using the ffcv data loader, we decreased the image size and other settings from (500, 0.5, 90) which takes 337GB to (448, 0.60, 90) which takes 229GB. We did not observe any decrease in performance comapared to the results posted in the ffcv repository on either ResNet-18 or ResNet-50 using these slightly smaller images.

CIFAR-10

SDGP Prune Function Non zeros Group size Top-1 Acc. Config Checkpoint
None (dense) 4 4 95.3 link link
Random 2 4 94.5 link link
Magnitude 2 4 95.2 link link
Rescale Mag. 1 4 95.1 link link
Rescale Mag. 2 4 95.2 link link
Rescale Mag. 1 8 94.7 link link
Rescale Mag. 2 8 95.1 link link
Rescale Mag. 4 8 95.2 link link
Rescale Mag. 2 16 95.1 link link
Rescale Mag. 4 16 95.2 link link
Rescale Mag. 8 16 95.2 link link
Rescale Mag. 4 32 94.9 link link
Rescale Mag. 8 32 95.3 link link
Rescale Mag. 16 32 95.3 link link

ImageNet

Model SDGP Prune Function Non zeros Group size Top-1 Acc. Config Checkpoint
ResNet-18 None (dense) 4 4 71.4 link link
ResNet-18 Random 2 4 64.3 link link
ResNet-18 Magnitude 2 4 72.1 link link
ResNet-18 Rescale Mag. 2 4 72.4 link link
ResNet-50 None (dense) 4 4 78.1 link link
ResNet-50 Random 2 4 70.3 link link
ResNet-50 Magnitude 2 4 77.7 link link
ResNet-50 Rescale Mag. 2 4 77.6 link link
RegNetX-400MF None (dense) 4 4 73.3 link link
RegNetX-400MF Random 2 4 64.3 link link
RegNetX-400MF Magnitude 2 4 72.1 link link
RegNetX-400MF Rescale Mag. 2 4 72.4 link link
Owner
Bradley McDanel
Bradley McDanel
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
571 Dec 25, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023