Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Overview

Reverse_Engineering_GMs

Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images".

The paper and supplementary can be found at https://arxiv.org/abs/2106.07873

alt text

Prerequisites

  • PyTorch 1.5.0
  • Numpy 1.14.2
  • Scikit-learn 0.22.2

Getting Started

Datasets

For reverse enginnering:

For deepfake detection:

  • Download the CelebA/LSUN dataset

For image_attribution:

  • Generate 110,000 images for four different GAN models as specified in https://github.com/ningyu1991/GANFingerprints/
  • For real images, use 110,000 of CelebA dataset.
  • For training: we used 100,000 images and remaining 10,000 for testing.

Training

  • Provide the train and test path in respective codes as sepecified below.
  • Provide the model path to resume training
  • Run the code

For reverse engineering, run:

python reverse_eng.py

For deepfake detection, run:

python deepfake_detection.py

For image attribution, run:

python image_attribution.py

Testing using pre-trained models

For reverse engineering, run:

python reverse_eng_test.py

For deepfake detection, run:

python deepfake_detection_test.py

For image attribution, run:

python image_attribution_test.py

If you would like to use our work, please cite:

@misc{asnani2021reverse,
      title={Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images}, 
      author={Vishal Asnani and Xi Yin and Tal Hassner and Xiaoming Liu},
      year={2021},
      eprint={2106.07873},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Comments
  • loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    Hello, I have met a problem (as in the picture below) when executing the file "reverse_eng_test.py" loading the model "11_model_set_1.pickle". Could you please tell me what does the error mean? Because I am not familiar with the architecture of the model and the given pre-trained model "11_model_set_1.pickle". Upon the error is the output of the code ( print(state1['optimizer_1']) ) added by me to see the state of the "state1['optimizer_1']". Thank you!

    image

    opened by hyhchaos 9
  • The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file

    The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file

    The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file. The lost .npy files are in the following codes:

    ground_truth_net_all=torch.from_numpy(np.load("ground_truth_net_131_15dim.npy")) ground_truth_loss_9_all=torch.from_numpy(np.load("ground_truth_loss_131_10dim.npy"))

    ground_truth_net_all_dev=torch.from_numpy(np.load("net_dev_131_dim.npy")) ground_truth_loss_9_all_dev=torch.from_numpy(np.load("ground_truth_loss_131_10dim.npy"))

    ground_truth_net_cluster=torch.from_numpy(np.load("net_cluster_131_dim.npy")) ground_truth_loss_9_cluster=torch.from_numpy(np.load("loss_cluster_131_dim.npy")) #ground_truth_net_all=torch.from_numpy(np.load("random_ground_truth_net_arch_91_15dim.npy")) #ground_truth_loss_all=torch.from_numpy(np.load("random_ground_truth_loss_91_3dim.npy")) #ground_truth_loss_9_all=torch.from_numpy(np.load("random_ground_truth_loss_91_9dim.npy"))

    ground_truth_p=torch.from_numpy(np.load("p_131_.npy"))

    If you could tell me where I can find them, thank you very much. Best wishes!

    opened by zhangtzq 3
  • deepfake_detection.py gives an error ValueError: loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    deepfake_detection.py gives an error ValueError: loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    @vishal3477 I couldn't run **fake_detection_test.py". It gives the following error below. Thanks,

    optimizer.load_state_dict(state1['optimizer_1'])
    

    deepfake_detection_test_error

    opened by ssablak 3
  • What is

    What is "ground_truth_dir" in "reverse_eng_test.py"?

    I have downloaded the data and model. When I run the "reverse_eng_test.py" file, I find that I can not provide the below files. Could you please answer how can I get these files? Thank you very much!

    ground_truth_net_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_net_arch_100_15dim.npy"))
    ground_truth_loss_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_3dim.npy"))
    ground_truth_loss_9_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_9dim.npy"))
    
    opened by hyhchaos 3
  • torch.rfft is deprecated

    torch.rfft is deprecated

    @vishal3477 Since rfft is deprecated in the newer torch versions. It gives the following error. rfft

    I tried to fix it, but it starts to give an error as rfft2error

    Could you please help me how to define rfft in the newer version of pytorch? Thanks. -Steve

    opened by ssablak 2
  • Getting only 0.1916 Accuracy in Image Attribution

    Getting only 0.1916 Accuracy in Image Attribution

    image

    I'm getting only 0.1916 accuracy in image attribution task, in the test dataset in each of the five classes I've puted 1K generated images from respective GANs and 1K real images from CelebA, and I'm using the pre-trained model.

    I'm using the following code in image_attribution_test.py file:

    from torchvision import datasets, models, transforms #from model import * import os import torch from torch.autograd import Variable from skimage import io from scipy import fftpack import numpy as np from torch import nn import datetime from models import encoder_image_attr from models import fen import torch.nn.functional as F from sklearn.metrics import accuracy_score from sklearn import metrics import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
    parser.add_argument('--data_test',default='Test_Dataset/',help='root directory for testing data')
    parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth')
    parser.add_argument('--seed', default=1, type=int, help='manual seed')
    parser.add_argument('--batch_size', default=16, type=int, help='batch size')
    parser.add_argument('--savedir', default='runs')
    parser.add_argument('--model_dir', default='./models')
    
    
    
    opt = parser.parse_args()
    print(opt)
    print("Random Seed: ", opt.seed)
    
    device=torch.device("cuda:0")
    torch.backends.deterministic = True
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed_all(opt.seed)
    sig = "sig"
    
    
    test_path=opt.data_test
    save_dir=opt.savedir
    
    os.makedirs('%s/logs/%s' % (save_dir, sig), exist_ok=True)
    os.makedirs('%s/result_2/%s' % (save_dir, sig), exist_ok=True)
    
    transform_train = transforms.Compose([
    transforms.Resize((128,128)),
    transforms.ToTensor(),
    transforms.Normalize((0.6490, 0.6490, 0.6490), (0.1269, 0.1269, 0.1269))
    ])
    
    
    test_set=datasets.ImageFolder(test_path, transform_train)
    
    
    test_loader = torch.utils.data.DataLoader(test_set,batch_size=opt.batch_size,shuffle =True, num_workers=1)
    
    
    
    model=fen.DnCNN().to(device)
    
    model_params = list(model.parameters())    
    optimizer = torch.optim.Adam(model_params, lr=opt.lr)
    l1=torch.nn.MSELoss().to(device)
    l_c = torch.nn.CrossEntropyLoss().to(device)
    
    model_2=encoder_image_attr.encoder(num_hidden=512).to(device)
    optimizer_2 = torch.optim.Adam(model_2.parameters(), lr=opt.lr)
    state = {
        'state_dict_cnn':model.state_dict(),
        'optimizer_1': optimizer.state_dict(),
        'state_dict_class':model_2.state_dict(),
        'optimizer_2': optimizer_2.state_dict()
        
    }
    
    
    state1 = torch.load("pre_trained_models/image_attribution/celeba/0_model_27_384000.pickle")
    optimizer.load_state_dict(state1['optimizer_1'])
    model.load_state_dict(state1['state_dict_cnn'])
    optimizer_2.load_state_dict(state1['optimizer_2'])
    model_2.load_state_dict(state1['state_dict_class'])
    
    
    
    
    def test(batch, labels):
        model.eval()
        model_2.eval()
        with torch.no_grad():
            y,low_freq_part,max_value ,y_orig,residual, y_trans,residual_gray =model(batch.type(torch.cuda.FloatTensor))
            y_2=torch.unsqueeze(y.clone(),1)
            classes, features=model_2(y_2)
            classes_f=torch.max(classes, dim=1)[0]
            
            n=25
            zero=torch.zeros([y.shape[0],2*n+1,2*n+1], dtype=torch.float32).to(device)  
            zero_1=torch.zeros(residual_gray.shape, dtype=torch.float32).to(device)
            loss1=0.5*l1(low_freq_part,zero).to(device) 
            loss2=-0.001*max_value.to(device)
            loss3 = 0.01*l1(residual_gray,zero_1).to(device)
            loss_c =10*l_c(classes,labels.type(torch.cuda.LongTensor))
            loss5=0.1*l1(y,y_trans).to(device)
            loss=(loss1+loss2+loss3+loss_c+loss5)
        return y, loss.item(), loss1.item(),loss2.item(),loss3.item(),loss_c.item(),loss5.item(),y_orig, features,residual,torch.max(classes, dim=1)[1], classes[:,1]
    
    
    print(len(test_set))
    print(test_set.class_to_idx)
    epochs=2
    
    
    for epoch in range(epochs):
        all_y=[]
        all_y_test=[]
        flag1=0
        count=0
        itr=0
        
        for batch_idx_test, (inputs_test,labels_test) in enumerate(test_loader):
    
            out,loss,loss1,loss2,loss3,loss4,loss5, out_orig,features,residual,pred,scores=test(Variable(torch.FloatTensor(inputs_test)),Variable(torch.LongTensor(labels_test)))
    
            if flag1==0:
                all_y_test=labels_test
                all_y_pred_test=pred.detach()
                all_scores=scores.detach()
                flag1=1
    
            else:
                all_y_pred_test=torch.cat([all_y_pred_test,pred.detach()], dim=0)
                all_y_test=torch.cat([all_y_test,labels_test], dim=0)
                all_scores=torch.cat([all_scores,scores], dim=0)
        fpr1, tpr1, thresholds1 = metrics.roc_curve(all_y_test, np.asarray(all_scores.cpu()), pos_label=1)
        print("testing accuracy is:", accuracy_score(all_y_test,np.asarray(all_y_pred_test.cpu())))
    
    opened by indrakumarmhaski 1
  • Groundtruth Files Issue

    Groundtruth Files Issue

    Hi Vishal, Where can I download the following files? I see three .npy files on the repo but the naming is not matching the exact files between repo and source code.

    I changed the filename in repo below

    FROM ground_truth_loss_func_3dim_file.npy ground_truth_loss_func_8dim_file.npy ground_truth_net_arch_15dim_file.npy groundtruth2

    TO below ground_truth_loss_100_9dim.npy ground_truth_net_arch_100_15dim.npy ground_truth_loss_100_3dim.npy

    groundtruthfiles

    But it didn't run through. It gives the following error

    error

    Thanks, -Steve

    opened by ssablak 1
  • I have a question

    I have a question

    hello, do i need to create all the paths in the reverse_eng.py ? what do i need to save for wach folder?

    parser.add_argument('--lr', default=0.0001, type=float, help='learning rate') parser.add_argument('--data_train',default='mnt/scratch/asnanivi/GAN_data_6/set_1/train',help='root directory for training data') parser.add_argument('--data_test',default='mnt/scratch/asnanivi/GAN_data_6/set_1/test',help='root directory for testing data') parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth') parser.add_argument('--seed', default=1, type=int, help='manual seed') parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--savedir', default='/mnt/scratch/asnanivi/runs') parser.add_argument('--model_dir', default='./models') parser.add_argument('--N_given', nargs='+', help='position number of GM from list of GMs used in testing', default=[1,2,3,4,5,6])

    os.chmod('./mnt/scratch',0o777) os.makedirs('.%s/result_3/%s' % (save_dir, sig), exist_ok=True)

    i also had a mistake:Couldn't find any class folder in mnt/scratch/asnanivi/GAN_data_6/set_1/train

    Thanks!

    opened by YZF-Myself 1
  • There is no codes about the cluster prediction about the discrete type network structure parameter in the encoder_rev_eng.py file

    There is no codes about the cluster prediction about the discrete type network structure parameter in the encoder_rev_eng.py file

    I'm sorry to have bothered you. But I didn't find the code for discrete type network structure parameter clustering prediction in the encoder_rev_eng.py file of the original models folder or in the latest Reverse Engineering 2.0 code compressed file. However, your article states the clustering prediction about discrete type network structure parameters, which is important to the result. Looking forward to your reply.

    opened by zhangtzq 5
  • Ground truth file missing

    Ground truth file missing

    Hi, thank you for sharing your code and data. I'm trying to run the reverse_eng_train.py and reverse_eng_test.py scripts, but both are failing due to missing files required in the following lines:

    ground_truth_net_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_net_arch_100_15dim.npy"))
    ground_truth_loss_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_3dim.npy"))
    ground_truth_loss_9_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_9dim.npy"))
    

    I downloaded the dataset of trained models from the google drive link in the Readme, but couldn't find any information about where we can access those ground-truth data.

    Also, could you verify that the file in the google drive 11_model_set_1.pickle contains the 100 trained models? When I load the file (e.g. data = torch.load('11_model_set_1.pickle), I am getting a checkpoint of a single model (and optimizers). I'd appreciate if you could verify that this is the right file to download the trained models.

    Thank you!

    opened by cocoaaa 1
  • Parameter setting in deepfake detection

    Parameter setting in deepfake detection

    Thank you very much for your contribution.In the deepfake detection module of the paper, parameter lambda1-4 are set as follows which is inconsistent with the code: 参数设置

    loss1=0.05*l1(low_freq_part,zero).to(device) 
    loss2=-0.001*max_value.to(device)
    loss3 = 0.01*l1(residual_gray,zero_1).to(device)
    loss_c =20*l_c(classes,labels.type(torch.cuda.LongTensor))
    loss5=0.1*l1(y,y_trans).to(device)
    

    Can you explain that? Thank you.

    opened by wytcsuch 5
Releases(v2.0)
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Nicholas Lee 3 Jan 09, 2022