2021 credit card consuming recommendation

Overview

2021-credit-card-consuming-recommendation

My implementation and sharing of this contest: https://tbrain.trendmicro.com.tw/Competitions/Details/18. I got rank 9 in the Private Leaderboard.

Run My Implementation

Required libs

matplotlib, numpy, pytorch, and yaml. Versions of them are not restricted as long as they're new enough.

Preprocess

python3 data_to_pkl.py
  • The officially provided csv file should be in data dir.
  • Output pkl file is also in data dir.

Feature Extraction

python3 pkl_to_fea_allow_shorter.py
  • See "作法分享" for detailed description of optional parameters.

Training

python3 train_cv_allow_shorter.py -s save_model_dir
  • -s: where you want to save the trained model.

Inference

Generate model outputs

python3 test_cv_raw_allow_shorter.py model_dir max_len
  • model_dir: directory of the trained model.
  • max_len: max number of month considered for each customer.

Merge model outputs

python3 test_cv_merge_allow_shorter.py n_fold_train
  • n_fold_train: number of folds used for training.

作法分享

以下將介紹本競賽所使用的執行環境、特徵截取、模型設計與訓練。

執行環境

硬體方面,初始時使用 ASUS P2440 UF 筆電,含 i7-8550U CPU 及 MX130 顯示卡,主記憶體擴充至 20 GB;後續使用較多特徵及較長期間的資料時,改為使用 AWS p2.xlarge 機器,含 K80 顯示卡以及約 64 GB 主記憶體。AWS 的經費來源是上一個比賽進入複賽拿到的點數,在打完複賽後還有剩下來的部分。

程式語言為 Python 3,未特別指定版本;函式庫則如本說明前半部所示,其中的 matplotlib 為繪圖觀察用,而 yaml 為儲存模型組態用。

特徵截取(附帶資料觀察)與預測目標

我先將欄位分為兩類,依照「訓練資料欄位說明」的順序,從 shop_tag(消費類別)起至 card_other_txn_amt_pct (其他卡片消費金額佔比)止,因為是從每月每類的消費行為而來,且消費行為必然是變動的,因此列為「時間變化類」;而 masts (婚姻狀態)起至最後為止,因所觀察到的每人的婚姻狀態或教育程度等,在比賽資料所截取的兩年間幾乎都不會變化,故列為「時間不變類」,以節省運算及儲存資源。事實上,在「時間不變類」的欄位當中,平均每人用過的不同狀態,平均約為 1.005 至 1.167 種,最多的則為 3 至 5 種。

時間變化類

對於每人每月的消費紀錄,以如下步驟取特徵

  1. 排序出消費金額前 n 大者,最佳成績中使用的 n 為 13。根據觀察,約 99% 的人,其每月消費類別數在 13 以下。
  2. 取該月時間特徵,為待預測月減去該月,共 1 維。
  3. 該月類別特徵共 49 維,若該月該類別消費金額在該月前 n 名中且金額大於 0 者,其特徵值由名次大到小依次為 n, n-1, n-2, …, 1;前 n 名以外或金額小於等於 0 的類別,其特徵值為 0。
  4. 對於前 n 名的每個類別,無論其消費金額皆取以下特徵,共 22 維:txn_cnt, txn_amt, domestic_offline_cnt, domestic_online_cnt, overseas_offline_cnt, overseas_online_cnt, domestic_offline_amt_pct, domestic_online_amt_pct, overseas_offline_amt_pct, overseas_online_amt_pct, card_*_txn_cnt (* = 1, 2, 4, 6, 10, other), card_*_txn_amt_pct (* = 1, 2, 4, 6, 10, other)。
    • 1, 2, 4, 6, 10, other 為所有消費紀錄中,使用次數最多的前六個卡片編號。
  5. 以上共 1 + 49 + 13 * 22 = 336 維

跨月份的取值方式如下圖所示,其中每個圓角方塊代表每人的一個月份的所有消費紀錄,而 N1 為 20 個月,N2 為 4 組,在範圍內會盡可能的取長或多。另,若該月未有消費紀錄,則忽略該月。

時間變化類取值方式

時間不變類

對於每位客戶,僅使用取值範圍內最後消費當月(N1 範圍內的最後一筆)的金額最大的類別所記載的資料來組成特徵。

使用時,以 masts, gender_code, age, primary_card, slam 各自編成 one-hot encoding 或數值型態後組合,共得 20 維,細節說明如下

  • masts: 含缺值共 4 種狀態,4 維。
  • gender_code: 含缺值共 3 種狀態,3 維。
  • age: 含缺值共 10 種狀態,10 維。
  • primary_card: 沒有缺值,共 2 種狀態,2 維。
  • slam: 數值型態,取 log 後做為特徵,1 維。

此部分亦嘗試過其他特徵,但可能是因為維度較大不易訓練(如 cuorg,含缺值共 35 維),或客戶有可能填寫不實(如 poscd),故未取得較好之結果。

預測目標

共 16 維,代表需要預測的 16 個類別,其中下月金額第一名者為 1,第二名者 0.8,第三名者 0.6,第四名以下有購買者 0.2,未購買者 0。

小結

以上取法經去除輸出全部為 0 (即預測目標月份沒有購買行為)之資料後,共約 102 萬組。

模型設計與訓練

本次比賽使用的模型架構如下圖,主體為 BiLSTM + attention,前後加上適量的 linear layers,其中標色部分為 attention 的做用範圍,最後面的 dense layers 之細部架構則為 (dense 128 + ReLU + dropout 0.1) * 2 + dense 16 + Sigmoid。

模型架構

訓練方式為 5 folds cross validation,預測時會將五個模型的結果取平均,再依據平均後的排名輸出前三名的類別。細節參數如下,未提及之參數係依照 pytorch 預設值,未進行修改:

  • Num of epochs: 100 epochs,若 validation loss 連續 10 個 epochs 未創新低,則提前終止該 fold 的訓練。
  • Batch size: 512。
  • Loss: MSE。
  • Optimizer: ADAM with learning rate 0.01。
  • Learning rate scheduler: 每個 epoch 下降為上一次的 0.95 倍,直至其低於 0.0001 為止。
Owner
Wang, Chung-Che
Wang, Chung-Che
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022