Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Related tags

Deep LearningAtmoDist
Overview

Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

The prediction of future climate scenarios under anthropogenic forcing is critical to understand climate change and to assess the impact of potentially counter-acting technologies. Machine learning and hybrid techniques for this prediction rely on informative metrics that are sensitive to pertinent but often subtle influences. For atmospheric dynamics, a critical part of the climate system, no well established metric exists and visual inspection is currently still often used in practice. However, this "eyeball metric" cannot be used for machine learning where an algorithmic description is required. Motivated by the success of intermediate neural network activations as basis for learned metrics, e.g. in computer vision, we present a novel, self-supervised representation learning approach specifically designed for atmospheric dynamics. Our approach, called AtmoDist, trains a neural network on a simple, auxiliary task: predicting the temporal distance between elements of a randomly shuffled sequence of atmospheric fields (e.g. the components of the wind field from reanalysis or simulation). The task forces the network to learn important intrinsic aspects of the data as activations in its layers and from these hence a discriminative metric can be obtained. We demonstrate this by using AtmoDist to define a metric for GAN-based super resolution of vorticity and divergence. Our upscaled data matches both visually and in terms of its statistics a high resolution reference closely and it significantly outperform the state-of-the-art based on mean squared error. Since AtmoDist is unsupervised, only requires a temporal sequence of fields, and uses a simple auxiliary task, it has the potential to be of utility in a wide range of applications.

Original implementation of

Hoffmann, Sebastian, and Christian Lessig. "Towards Representation Learning for Atmospheric Dynamics." arXiv preprint arXiv:2109.09076 (2021). https://arxiv.org/abs/2109.09076

presented as part of the NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning

We would like to thank Stengel et al. for openly making available their implementation (https://github.com/NREL/PhIRE) of Adversarial super-resolution of climatological wind and solar data on which we directly based the super-resolution part of this work.


Requirements

  • tensorflow 1.15.5
  • pyshtools (for SR evaluation)
  • pyspharm (for SR evaluation)
  • h5py
  • hdf5plugin
  • dask.array

Installation

pip install -e ./

This also makes available multiple command line tools that provide easy access to preprocessing, training, and evaluation routines. It's recommended to install the project in a virtual environment as to not polutte the global PATH.


CLI Tools

The provided CLI tools don't accept parameters but rather act as a shortcut to execute the corresponding script files. All parameters controlling the behaviour of the training etc. should thus be adjusted in the script files directly. We list both the command-line command, as well as the script file the command executes.

  • rplearn-data (python/phire/data_tool.py)
    • Samples patches and generates .tfrecords files from HDF5 data for the self-supervised representation-learning task.
  • rplearn-train (python/phire/rplearn/train.py)
    • Trains the representation network. By toggling comments, the same script is also used for evaluation of the trained network.
  • phire-data (python/phire/data_tool.py)
    • Samples patches and generates .tfrecords files from HDF5 data for the super-resolution task.
  • phire-train (python/phire/main.py)
    • Trains the SRGAN model using either MSE or a content-loss based on AtmoDist.
  • phire-eval (python/phire/evaluation/cli.py)
    • Evaluates trained SRGAN models using various metrics (e.g. energy spectrum, semivariogram, etc.). Generation of images is also part of this.

Project Structure

  • python/phire
    • Mostly preserved from the Stengel et al. implementation, this directory contains the code for the SR training. sr_network.py contains the actual GAN model, whereas PhIREGANs.py contains the main training loop, data pipeline, as well as interference procedure.
  • python/phire/rplearn
    • Contains everything related to representation learning task, i.e. AtmoDist. The actual ResNet models are defined in resnet.py, while the training procedure can be found in train.py.
  • python/phire/evaluation
    • Dedicated to the evaluation of the super-resolved fields. The main configuration of the evaluation is done in cli.py, while the other files mostly correspond to specific evaluation metrics.
  • python/phire/data
    • Static data shipped with the python package.
  • python/phire/jetstream
    • WiP: Prediction of jetstream latitude as downstream task.
  • scripts/
    • Various utility scripts, e.g. used to generate some of the figures seen in the paper.

Preparing the data

AtmoDist is trained on vorticity and divergence fields from ERA5 reanalysis data. The data was directly obtained as spherical harmonic coefficients from model level 120, before being converted to regular lat-lon grids (1280 x 2560) using pyshtools (right now not included in this repository).

We assume this gridded data to be stored in a hdf5 file for training and evaluation respectively containing a single dataset /data with dimensions C x T x H x W. These dimensions correspond to channel (/variable), time, height, and width respectively. Patches are then sampled from this hdf5 data and stored in .tfrecords files for training.

In practice, these "master" files actually contained virtual datasets, while the actual data was stored as one hdf5 file per year. This is however not a hard requirement. The script to create these virtual datasets is currently not included in the repository but might be at a later point of time.

To sample patches for training or evaluation run rplearn-data and phire-data.

Normalization

Normalization is done by the phire/data_tool.py script. This procedure is opaque to the models and data is only de-normalized during evaluation. The mean and standard deviations used for normalization can be specified using DataSampler.mean, DataSampler.std, DataSampler.mean_log1p, DataSampler.std_log1p. If specified as None, then these statistics will be calculated from the dataset using dask (this will take some time).


Training the AtmoDist model

  1. Specify dataset location, model name, output location, and number of classes (i.e. max delta T) in phire/rplearn/train.py
  2. Run training using rplearn-train
  3. Switch to evaluation by calling evaluate_all() and compute metrics on eval set
  4. Find optimal epoch and calculate normalization factors (for specific layer) using calculate_loss()

Training the SRGAN model

  1. Specify dataset location, model name, AtmoDist model to use, and training regimen in phire/main.py
  2. Run training using phire-train

Evaluating the SRGAN models

  1. Specify dataset location, models to evaluate, output location, and metrics to calculate in phire/evaluation/cli.py
  2. Evaluate using phire-eval
  3. Toggle the if-statement to generate comparing plots and data between different models and rerun phire-eval
Owner
Sebastian Hoffmann
Sebastian Hoffmann
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022