This repository allows you to anonymize sensitive information in images/videos. The solution is fully compatible with the DL-based training/inference solutions that we already published/will publish for Object Detection and Semantic Segmentation.

Overview

BMW-Anonymization-Api

Data privacy and individuals’ anonymity are and always have been a major concern for data-driven companies.

Therefore, we designed and implemented an anonymization API that localizes and obfuscates (i.e. hides) sensitive information in images/videos in order to preserve the individuals' anonymity. The main features of our anonymization tool are the following:

  • Agnostic in terms of localization techniques: our API currently supports Semantic segmentation or Object Detection.
  • Modular in terms of sensitive information: the user can train a Deep Learning (DL) model for object detection and semantic segmentation (the training gui will be published soon) to localize the sensitive information she/he wishes to protect, e.g., individual's face or body, personal belongings, vehicles...
  • Scalable in terms of anonymization techniques: our API currently supports pixelating, blurring, blackening (masking). Also, additinal anonymization techniques can be configured as stated below. For the highest level of privacy, we recommend using the blackening technique with degree 1.
  • Supports DL-based models optimized via the Intel® OpenVINO™ toolkit v2021.1 for CPU usage: DL-based models optimized and deployed via the Openvino Segmentation Inference API and the Openvino Detection Inference API can also be used.
  • Compatible with the BMW Deep Learning tools: DL models trained via our training and deployed via our inference APIs are compatible with this anonymization API.

animated

General Architecture & Deployment Mode:

Our anonymization API receives an image along with a JSON object through which the user specifies mainly:

  • The sensitive information she/he wishes to obfuscate.
  • The anonymization technique.
  • The anonymization degree.
  • The localization technique.

You can deploy the anonymization API either:

  • As a standalone docker container which can be connected to other inference APIs (object detection or semantic segmentation) deployed within a standalone docker container as well.
  • As a network of docker containers along with other inference APIs running on the same machine via docker-compose. (please check the following link for the docker-compose deployment).

Prerequisites:

  • docker
  • docker-compose

Check for prerequisites

To check if docker-ce is installed:

docker --version

To check if docker-compose is installed:

docker-compose --version

Install prerequisites

Ubuntu

To install Docker and Docker Compose on Ubuntu, please follow the link.

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

As mentioned before, this container can be deployed using either docker or docker-compose.

  • If you wish to deploy this API using docker-compose, please refer to following link. After deploying the API with docker compose, please consider returning to this documentation for further information about the API Endpoints and use configuration file sample sections.

  • If you wish to deploy this API using docker, please continue with the following docker build and run commands.

In order to build the project run the following command from the project's root directory:

 docker build -t anonymization_api -f docker/dockerfile .

Build behind a proxy

In order to build the image behind a proxy use the following command in the project's root directory:

docker build --build-arg http_proxy='your_proxy' --build-arg https_proxy='your_proxy' -t anonymization_api -f ./docker/dockerfile .

In case of build failure, the docker image python:3.6 should be updated to a newer version:

docker pull python:3.6

Run the docker container

To run the API, go to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api
Behind a proxy:
sudo docker run -itv $(pwd)/src/main:/main -v $(pwd)/jsonFiles:/jsonFiles  --env HTTP_PROXY="" --env HTTPS_PROXY="" --env http_proxy="" --env https_proxy="" -p 5555:4343 anonymization_api

Using Windows based docker:

docker run -itv ${PWD}/src/main:/main -v ${PWD}/jsonFiles:/jsonFiles -p <port_of_your_choice>:4343 anonymization_api

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

Configuration

/set_url (POST)

Set the URL of the inference API that you wish to connect to the Anonymization API. If the specified URL is unreachable due to connection problems, it will not be added to the JSON url_configuration file. The URL should be specified in the following format "http://ip:port/".

/list_urls (GET)

Returns the URLs of the inference APIs that were already configured via the /set_url POST request.

/remove_url (POST)

Removes the specified URL from the JSON url_configuration file

/remove_all_urls (POST)

Removes all available urls from the JSON url_configuration file

/available_methods/ (GET)

After setting the inference URLs via the /set_url request, the user can view the Anonymization API's configuration by issuing the /available_methods request. Mainly the user can view (i) the supported sensitive information (label_names) , (ii) the supported localization techniques, (iii) the inference URLs and (iv) the DL model name that are configured in the deployed anonymization API as seen below.

Anonymization

/anonymize/ (POST)

Anonymizes the input image based on the user's JSON configuration file

/anonymize_video/ (POST)

Anonymizes a video based on the user's sensitive info and save the anonymized video in src/main/anonymized_videos under <original_video_name>_TIMESTAMP.mp4

Video Anonymization Time

The video might take a while, actually you can estimate the time that it may take by using the following formula: Video_Anonymization_Time = Video_Length x Number_Of_Frames_Per_Second x Anonymization_Time_Of_Each_Frame

User configuration file sample

In order to anonymize an image, the user should specify the different details in the user's JSON configuration file

Please check a sample in the below image:

Note that the URL field is an optional field that you can add in case you wanted to use a specific URL of a running API. You can just add the URL as an optional field in this file as shown in the first sensitive info. In case this field is not specified, the URL defined in the url_configuration.json file will be used by default if it matches all the requirements.

To add a new technique to the API:

Please refer to the following link add new technique documentation for more information on how to add a new anonymization technique to the APIs with common and custom labels.

Benchmark

Object Detection

GPU Network Width Height Inference time Anonymization time Total
Titan RTX yolov4 640 768 0.2 s 0.07 s 0.27 s
Titan RTX yolov4 1024 768 0.4 s 0.14 s 0.54 s
Titan RTX yolov4 2048 1024 1.2 s 0.6 s 1.8 s
Titan RTX yolov4 3840 2160 4.8 s 0.6 s 5.4 s

Semantic Segmentation

GPU Network Width Height Inference time Anonymization time Total
Titan RTX psp resnet 101 640 768 0.2 s 0.8 s 1 s
Titan RTX psp resnet 101 1024 768 0.3 s 0.8 s 1.1 s
Titan RTX psp resnet 101 2048 1024 0.9 s 1 s 1.9 s
Titan RTX psp resnet 101 3840 2160 2 s 3 s 5 s

Possible Error

  • You may encounter the below error when running the docker container at startup in standalone version or docker-compose version url_error

  • In case you do, please make sure that the URL of the inference APIs listed in the jsonFiles/url_configuration.json are still recheable. A possible solution would be to empty jsonFiles/url_configuration.json as seen below before starting the container:

    {
    "urls": [
    ]
    }
    

Acknowledgments

Ghenwa Aoun, BMW Innovation Lab, Munich, Germany

Antoine Charbel, inmind.ai, Beirut, Lebanon

Roy Anwar, BMW Innovation Lab, Munich, Germany

Fady Dib, BMW Innovation Lab, Munich, Germany

Jimmy Tekli, BMW Innovation Lab, Munich, Germany

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022