Automatic Idiomatic Expression Detection

Related tags

Deep LearningDISC
Overview

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC)

An Idiomatic identifier that detects the presence and span of idiomatic expression in a given sentence.

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. License
  5. Contact
  6. Acknowledgements

About The Project

This project is a supervised idiomatic expression identification method. Given a sentence that contains a potentially idiomatic expression (PIE), the model identifies the span of the PIE if it is indeed used in an idiomatic sense, otherwise, the model does not identify the PIE. The identification is done via checking the smemantic compatibility. More details will be updated here (Detail description, figures, etc.).

The paper will appear in TACL.

Built With

This model is heavily relying the resources/libraries list as following:

Getting Started

The implementation here includes processed data created for MAGPIE random-split dataset. The model checkpoint that trained with MAGPIE random-split is also provided.

Prerequisites

All the dependencies for this project is listed in requirements.txt. You can install them via a standard command:

pip install -r requirements.txt

It is highly recommanded to start a conda environment with PyTorch properly installed based on your hardward before install the other requirements.

Checkpoint

To run the model with a pre-trained checkpoint, please first create a ./checkpoints folder at root. Then, please download the checkpoint from Google Drive via this Link. Please put the checkpoint in the ./checkpoints folder.

Usage

Configuration

Before running the demo or experiments (training or testing), please see the config.py which sets the configuration of the model. Some parameters there, such as MODE needs to be set appropriately for the model to run correctly. Please see comments for more details.

Demo

To start, please go through the examples provided in demo.ipynb. In there, we process a given input sentence into the model input data and then run model inference to extract the idiomatic expression (if present) from the input sentence (visualized).

Data processing

To process a dataset (such as MAGPIE) for model training and testing, please refer to ./data_processing/MAGPIE/read_comp_data_processing.ipynb. It takes a dataset with sententences and their PIE lcoations as input and generate all the necessary files for model training and inference.

Training and Testing

For training and testing, please refer to train.py and test.py. Note that test.py is used to produce evaluation scores as shown in the paper. inference.py is used to produce prediction for sentences.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Ziheng Zeng - [email protected]

Project Link: https://github.com/your_username/repo_name

Acknowledgements

[TODO]:

Add the following in README:

  • Method detail descrption
  • Method figure
  • Demo walkthrough
  • Data processing tips and instructions Add requirements.txt
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022