[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

Overview

AugMax: Adversarial Composition of Random Augmentations for Robust Training

License: MIT

Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, and Zhangyang Wang

In NeurIPS 2021

Overview

We propose AugMax, a data augmentation framework to unify the diversity and hardness. Being a stronger form of data augmentation, AugMax leads to a significantly augmented input distribution which makes model training more challenging. To solve this problem, we further design a disentangled normalization module, termed DuBIN (Dual-Batch-and-Instance Normalization) that disentangles the instance-wise feature heterogeneity arising from AugMax. AugMax-DuBIN leads to significantly improved out-of-distribution robustness, outperforming prior arts by 3.03%, 3.49%, 1.82% and 0.71% on CIFAR10-C, CIFAR100-C, Tiny ImageNet-C and ImageNet-C.

AugMax
AugMax achieves a unification between hard and diverse training samples.

results
AugMax achieves state-fo-the-art performance on CIFAR10-C, CIFAR100-C, Tiny ImageNet-C and ImageNet-C.

Training

AugMax-DuBIN training on <dataset> with <backbone>:

python augmax_training_ddp.py --gpu 0 --drp <data_root_path> --ds <dataset> --md <backbone> --Lambda 10

For example:

AugMax-DuBIN on CIFAR10 with ResNeXt29:

NCCL_P2P_DISABLE=1 python augmax_training_ddp.py --gpu 0 --drp /ssd1/haotao/datasets --ds cifar10 --md ResNeXt29 --Lambda 10

AugMax-DuBIN + DeepAug on ImageNet with ResNet18:

NCCL_P2P_DISABLE=1 python augmax_training_ddp.py --gpu 0 --drp /ssd1/haotao/datasets --ds IN --md ResNet18 --deepaug --Lambda 10 -e 30 --wd 1e-4 --decay multisteps --de 10 20 --ddp --dist_url tcp://localhost:23456

Pretrained models

The pretrained models are available on Google Drive.

Testing

To test the model trained on <dataset> with <backbone> and saved to <ckpt_path>:

python test.py --gpu 0 --ds <dataset> --drp /ssd1/haotao/datasets --md <backbone> --mode all --ckpt_path <ckpt_path>

For example:

python test.py --gpu 0 --ds cifar10 --drp /ssd1/haotao/datasets --md ResNet18_DuBIN --mode all --ckpt_path augmax_training/cifar10/ResNet18_DuBIN/fat-1-untargeted-10-0.1_Lambda10-jsd4_e200-b256_sgd-lr0.1-m0.9-wd0.0005_cos

Citation

@inproceedings{wang2021augmax,
  title={AugMax: Adversarial Composition of Random Augmentations for Robust Training},
  author={Wang, Haotao and Xiao, Chaowei and Kossaifi, Jean and Yu, Zhiding and Anandkumar, Anima and Wang, Zhangyang},
  booktitle={NeurIPS},
  year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022