SIR model parameter estimation using a novel algorithm for differentiated uniformization.

Overview

TenSIR

Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate matrices in tensor representation.

This repository contains the code for the paper.

Data

We used the data from the Austrian BMSGPK on the COVID-19 pandemic from March 2020 to August 2020. A CSV file containing the data used by us can be found here if the API is subject to change in the future.

Results

Kernel density estimation plot of points generated by Hamilton Monte Carlo simulation

HMC plot

The x marks the least squares estimate after grid search using the default deterministic model (system of ODEs).

Susceptible and infected people to/with COVID-19 in Austria during the early months of the pandemic

Timeline plot

Reproducing the results

Prerequisites

  • Python 3.7+ with Pip (tested with Python 3.9 and 3.10)

Setup

We advise you to use a virtual environment for running the code. After you activated it change to the source directory and run

pip install -r requirements.txt

Generating points

To exactly reproduce our results, one should use the generate-points.py script as

python generate-points.py <month> <run>

where <month> is a number from 3 (March 2020) to 8 (August 2020) and <run> specifies a number for an independent HMC run. The random number generator is seeded uniquely for each run by seed = month * 1000 + run. For the HMC simulation, we did 10 runs (with numbers 0 - 9) for each month (3 - 8) resulting in 60 runs total.

Note that the script assumes 48 CPU threads. This can be changed in the script, though diminishing returns are expected for thread counts greater than 60. More runs can of course be computed independently in parallel.

The parameters for all simulations were as follows (as seen in generate-points.py):

  • Initial parameter Theta0 = (0.1, 0.1) (*)
  • Covariance matrix M = diag(2)
  • "Learning rate" epsilon = 0.05
  • Leapfrog count L = 5 per generated point
  • Simulation until 100 points are accepted for each run
  • Discard the first 10% of accepted points as "burn-in" before plotting

(*) In our framework we use the convention Theta = (alpha, beta) and theta = (log(alpha), log(beta)) where alpha, beta are the parameters of the SIR model.

Leveraging HPC clusters

Especially for months March, April and August the simulation can take quite some time. If there is access to a compute cluster that uses slurm the slurm-job-template.sh can be utilized. Note that the venv must be setup on the target architecture.

Owner
The Spang Lab
Statistical Bioinformatics Department, University of Regensburg, Germany
The Spang Lab
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Code for testing convergence rates of Lipschitz learning on graphs

๐Ÿ“ˆ LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mrลกulja 1 Dec 12, 2021
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022