FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

Related tags

Deep LearningFastFCN
Overview

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation

[Project] [Paper] [arXiv] [Home]

PWC

Official implementation of FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
A Faster, Stronger and Lighter framework for semantic segmentation, achieving the state-of-the-art performance and more than 3x acceleration.

@inproceedings{wu2019fastfcn,
  title     = {FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation},
  author    = {Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu Yizhou},
  booktitle = {arXiv preprint arXiv:1903.11816},
  year = {2019}
}

Contact: Hui-Kai Wu ([email protected])

Update

2020-04-15: Now support inference on a single image !!!

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m experiments.segmentation.test_single_image --dataset [pcontext|ade20k] \
    --model [encnet|deeplab|psp] --jpu [JPU|JPU_X] \
    --backbone [resnet50|resnet101] [--ms] --resume {MODEL} --input-path {INPUT} --save-path {OUTPUT}

2020-04-15: New joint upsampling module is now available !!!

  • --jpu [JPU|JPU_X]: JPU is the original module in the arXiv paper; JPU_X is a pyramid version of JPU.

2020-02-20: FastFCN can now run on every OS with PyTorch>=1.1.0 and Python==3.*.*

  • Replace all C/C++ extensions with pure python extensions.

Version

  1. Original code, producing the results reported in the arXiv paper. [branch:v1.0.0]
  2. Pure PyTorch code, with torch.nn.DistributedDataParallel and torch.nn.SyncBatchNorm. [branch:latest]
  3. Pure Python code. [branch:master]

Overview

Framework

Joint Pyramid Upsampling (JPU)

Install

  1. PyTorch >= 1.1.0 (Note: The code is test in the environment with python=3.6, cuda=9.0)
  2. Download FastFCN
    git clone https://github.com/wuhuikai/FastFCN.git
    cd FastFCN
    
  3. Install Requirements
    nose
    tqdm
    scipy
    cython
    requests
    

Train and Test

PContext

python -m scripts.prepare_pcontext
Method Backbone mIoU FPS Model Scripts
EncNet ResNet-50 49.91 18.77
EncNet+JPU (ours) ResNet-50 51.05 37.56 GoogleDrive bash
PSP ResNet-50 50.58 18.08
PSP+JPU (ours) ResNet-50 50.89 28.48 GoogleDrive bash
DeepLabV3 ResNet-50 49.19 15.99
DeepLabV3+JPU (ours) ResNet-50 50.07 20.67 GoogleDrive bash
EncNet ResNet-101 52.60 (MS) 10.51
EncNet+JPU (ours) ResNet-101 54.03 (MS) 32.02 GoogleDrive bash

ADE20K

python -m scripts.prepare_ade20k

Training Set

Method Backbone mIoU (MS) Model Scripts
EncNet ResNet-50 41.11
EncNet+JPU (ours) ResNet-50 42.75 GoogleDrive bash
EncNet ResNet-101 44.65
EncNet+JPU (ours) ResNet-101 44.34 GoogleDrive bash

Training Set + Val Set

Method Backbone FinalScore (MS) Model Scripts
EncNet+JPU (ours) ResNet-50 GoogleDrive bash
EncNet ResNet-101 55.67
EncNet+JPU (ours) ResNet-101 55.84 GoogleDrive bash

Note: EncNet (ResNet-101) is trained with crop_size=576, while EncNet+JPU (ResNet-101) is trained with crop_size=480 for fitting 4 images into a 12G GPU.

Visual Results

Dataset Input GT EncNet Ours
PContext
ADE20K

More Visual Results

Acknowledgement

Code borrows heavily from PyTorch-Encoding.

Comments
  • Some problem when running test.py and train.py

    Some problem when running test.py and train.py

    Hi, I am a beginner in deep learning. Some problem occurred when I was running the code. First, I use the command 「 tar -xvf encnet_jpu_res50_pcontext.pth.tar 」 to extract the tar file, but it fails. Second, if i successfully extract the file and get checkpoint, which file should I put my checkpoint in ? Where should I extract my checkpoint file to? Thank You!

    opened by pp00704831 18
  • why i remove JPU,I also can  train model?

    why i remove JPU,I also can train model?

    Why does the code still execute without error when I delete the JPU module?(/FastFCN/encoding/nn/customize.py),I also can train model? These are my commands :(I did load the JPU module) CUDA_VISIBLE_DEVICES=4,5,6,7 python train.py --dataset pcontext --model encnet --jpu --aux --se-loss --backbone resnet101 --checkname encnet_res101_pcontext

    opened by E18301194 17
  • Segmentation fault

    Segmentation fault

    I think this problem is caused by my previous pytorch problem,so maybe i have to solve pytorch first.Could you give me some help? gcc:4.8 pytorch:1.1.0 python:3.5 and how could i change the pytorch version to 1.0.0?pip install torch==1.0?

    opened by Anikily 12
  • Performance Issue

    Performance Issue

    Thanks for your work. I have tried this script: https://github.com/wuhuikai/FastFCN/blob/master/experiments/segmentation/scripts/encnet_res50_pcontext.sh with the hardware and software: 4xTitanXp, Ubuntu16.04, CUDA9.0, PyToch1.0

    But I can't reproduce the performance reported in your paper. I got pixAcc: 0.7747, mIoU: 0.4785 for single-scale, and pixAcc: 0.7833, mIoU: 0.4898 for multi-scale.

    I would appreciate your help. Thanks for your consideration.

    bug 
    opened by tonysy 12
  • FastFCN has been supported by MMSegmentation.

    FastFCN has been supported by MMSegmentation.

    Hi, right now FastFCN has been supported by MMSegmentation. We do find using JPU with smaller feature maps from backbone could get similar or higher performance than original models with larger feature maps.

    There is still something to do for us, for example, we do not find obviously improvement about FPS in our implementation, thus we would try to figure it out in the future.

    Anyway, thanks for your work and hope more people from community could use FastFCN.

    Best,

    opened by MengzhangLI 9
  • RuntimeError: Failed downloading

    RuntimeError: Failed downloading

    Hi, thanks for your work. I try to run your code to train a model on the pascalContext dataset.But I got the following error: RuntimeError: Failed downloading url https://hangzh.s3.amazonaws.com/encoding/models/resnet50-ebb6acbb.zip I find the problem is I can not download the pretrained model. I find the author no longer provide the pretrained resnet model. https://github.com/zhanghang1989/PyTorch-Encoding/issues/273

    So, How can I solve this problem. Thanks for your consideration.

    opened by bufferXia 9
  • How could I set

    How could I set "resume" while running test_single_image?

    Hello!

    When I run test_single_image.py, I tried to set resume as path of resnet101-2a57e44d.pth and encountered an error.

    File "G:/gitfolder/FastFCN/experiments/segmentation/test_single_image.py", line 43, in test model.load_state_dict(checkpoint['state_dict'], strict=False) KeyError: 'state_dict

    I doubted that there existed a problem with "resume". Waiting for your reply.

    Thank you!

    opened by CN-HaoJiang 8
  • Questions about the SE-loss and  Aux-loss

    Questions about the SE-loss and Aux-loss

    Hi, first thank you for the great work. I just checked the codes and also had run some scripts. I am confused with the final loss which is composited with three individual losses. could you tell what is the se-loss and the aux-loss used for.

    opened by meanmee 7
  • Backbone weights download links not working anymore

    Backbone weights download links not working anymore

    Download links for the backbone do not seem to work anymore.

    I've tested with Resnet50 (https://hangzh.s3.amazonaws.com/encoding/models/resnet50-ebb6acbb.zip) and Resnet 101 (https://hangzh.s3.amazonaws.com/encoding/models/resnet101-2a57e44d.zip) too.

    I also tried to use torchivision weights instead, but I got matching errors when trying to load them.

    Could you consider reuploading the weights? That would be very helpful!

    opened by Khroto 6
  • Segmentation Fault

    Segmentation Fault

    我執行以下 command 準備 train model 但是發生 segmentation fault 有人有這個問題嗎 ? 謝謝幫忙 !

    run : CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset pcontext --model encnet --jpu --aux --se-loss --backbone resnet101 --checkname encnet_res101_pcontext

    crashed : Using poly LR Scheduler! Starting Epoch: 0 Total Epoches: 80 0%| | 0/312 [00:00<?, ?it/s] =>Epoches 0, learning rate = 0.0010, previous best = 0.0000 Segmentation fault

    //------------ Nvidia GPU : Tesla P100-PCIE 16G x 4 CPU : GenuineIntel x 18 , Memory 140G totally

    opened by SimonTsungHanKuo 6
  • Need your suggestions

    Need your suggestions

    Hi, i have designed this SPP module for my network. But i am also interested in your work to replace my his module with JPU. Would you like to give me any suggestions? here is my implementation

    class SPP(nn.Module): def init(self, pool_sizes): super(SPP, self).init() self.pool_sizes = pool_sizes

    def forward(self, x):
        h, w = x.shape[2:]
        k_sizes = []
        strides = []
        for pool_size in self.pool_sizes:
            k_sizes.append((int(h / pool_size), int(w / pool_size)))
            strides.append((int(h / pool_size), int(w / pool_size)))
    
        spp_sum = x
    
        for i in range(len(self.pool_sizes)):
            out = F.avg_pool2d(x, k_sizes[i], stride=strides[i], padding=0)
            out = F.upsample(out, size=(h, w), mode="bilinear")
            spp_sum = spp_sum + out
    
        return spp_sum  
    
    opened by haideralimughal 5
  • add resnest and xception65

    add resnest and xception65

    Copy Resnest and xception65 from Pytorch-Encoding, and xception65 only can be used without pretrained models.

    Pls be careful as there are many changes!!

    I test it on my own server, and everything seems ok. As a caution, maybe you could test it by yourself first.My FastFCN

    I don't change the Readme.md and *.sh. Maybe you can rectify it if you agree this request.

    If the server resources are not tight, I will run the encnet+jpu+resnest101+pcontext and encnet+jpu_x+resnest101+pcontext, I will share you the results at issues or pull another request about Readme.md with my pth.tar.

    Thanks for your work again.

    opened by tjj1998 1
Releases(v1.0.0)
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Özlem Taşkın 0 Feb 23, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022