Reverse engineer your pytorch vision models, in style

Related tags

Deep Learningrover
Overview

🔍 Rover

Reverse engineer your CNNs, in style

Open In Colab

Rover will help you break down your CNN and visualize the features from within the model. No need to write weirdly abstract code to visualize your model's features anymore.

💻 Usage

git clone https://github.com/Mayukhdeb/rover.git; cd rover

install requirements:

pip install -r requirements.txt
from rover import core
from rover.default_models import models_dict

core.run(models_dict = models_dict)

and then run the script with streamlit as:

$ streamlit run your_script.py

if everything goes right, you'll see something like:

You can now view your Streamlit app in your browser.

  Local URL: http://localhost:8501

🧙 Custom models

rover supports pretty much any PyTorch model with an input of shape [N, 3, H, W] (even segmentation models/VAEs and all that fancy stuff) with imagenet normalization on input.

import torchvision.models as models 
model = models.resnet34(pretrained= True)  ## or any other model (need not be from torchvision.models)

models_dict = {
    'my model': model,  ## add in any number of models :)
}

core.run(
    models_dict = models_dict
)

🖼️ Channel objective

Optimizes a single channel from one of the layer(s) selected.

  • layer index: specifies which layer you want to use out of the layers selected.
  • channel index: specifies the exact channel which needs to be visualized.

🧙‍♂️ Writing your own objective

This is for the smarties who like to write their own objective function. The only constraint is that the function should be named custom_func.

Here's an example:

def custom_func(layer_outputs):
    '''
    layer_outputs is a list containing 
    the outputs (torch.tensor) of each layer you selected

    In this example we'll try to optimize the following:
    * the entire first layer -> layer_outputs[0].mean()
    * 20th channel of the 2nd layer -> layer_outputs[1][20].mean()
    '''
    loss = layer_outputs[0].mean() + layer_outputs[1][20].mean()
    return -loss

Running on google colab

Check out this notebook. I'll also include the instructions here just in case.

Clone the repo + install dependencies

!git clone https://github.com/Mayukhdeb/rover.git
!pip install torch-dreams --quiet
!pip install streamlit --quiet

Navigate into the repo

import os 
os.chdir('rover')

Write your file into a script from a cell. Here I wrote it into test.py

%%writefile  test.py

from rover import core
from rover.default_models import models_dict

core.run(models_dict = models_dict)

Run script on a thread

import threading

proc = threading.Thread(target= os.system, args=['streamlit run test.py'])
proc.start()

Download ngrok:

!wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
!unzip -o ngrok-stable-linux-amd64.zi

More ngrok stuff

get_ipython().system_raw('./ngrok http 8501 &')

Get your URL where rover is hosted

!curl -s http://localhost:4040/api/tunnels | python3 -c \
    "import sys, json; print(json.load(sys.stdin)['tunnels'][0]['public_url'])"

💻 Args

  • width (int, optional): Width of image to be optimized
  • height (int, optional): Height of image to be optimized
  • iters (int, optional): Number of iterations, higher -> stronger visualization
  • lr (float, optional): Learning rate
  • rotate (deg) (int, optional): Max rotation in default transforms
  • scale max (float, optional): Max image size factor.
  • scale min (float, optional): Minimum image size factor.
  • translate (x) (float, optional): Maximum translation factor in x direction
  • translate (y) (float, optional): Maximum translation factor in y direction
  • weight decay (float, optional): Weight decay for default optimizer. Helps prevent high frequency noise.
  • gradient clip (float, optional): Maximum value of the norm of gradient.

Run locally

Clone the repo

git clone https://github.com/Mayukhdeb/rover.git

install requirements

pip install -r requirements.txt

showtime

streamlit run test.py
Owner
Mayukh Deb
Learning about life, one epoch at a time
Mayukh Deb
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022