Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Overview

High-Performance Brain-to-Text Communication via Handwriting

System diagram

Overview

This repo is associated with this manuscript, preprint and dataset. The code can be used to run an offline reproduction of the main result: high-performance neural decoding of attempted handwriting movements. The jupyter notebooks included here implement all steps of the process, including labeling the neural data with HMMs, training an RNN to decode the neural data into sequences of characters, applying a language model to the RNN outputs, and summarizing the performance on held-out data.

Results from each step are saved to disk and used in future steps. Intermediate results and models are available with the data - download these to explore certain steps without needing to run all prior ones (except for Step 3, which you'll need to run on your own because it produces ~100 GB of files).

Results

Below are the main results from my original run of this code. Results are shown from both train/test partitions ('HeldOutTrials' and 'HeldOutBlocks') and were generaetd with this notebook. 95% confidence intervals are reported in brackets for each result.

HeldOutTrials

Character error rate (%) Word error rate (%)
Raw 2.78 [2.20, 3.41] 12.88 [10.28, 15.63]
Bigram LM 0.80 [0.44, 1.22] 3.64 [2.11, 5.34]
Bigram LM + GPT-2 Rescore 0.34 [0.14, 0.61] 1.97 [0.78, 3.41]

HeldOutBlocks

Character error rate (%) Word error rate (%)
Raw 5.32 [4.81, 5.86] 23.28 [21.27, 25.41]
Bigram LM 1.69 [1.32, 2.10] 6.10 [4.97, 7.25]
Bigram LM + GPT-2 Rescore 0.90 [0.62, 1.23] 3.21 [2.37, 4.11]

Train/Test Partitions

Following our manuscript, we use two separate train/test partitions (available with the data): 'HeldOutBlocks' holds out entire blocks of sentences that occur later in each session, while 'HeldOutTrials' holds out single sentences more uniformly.

'HeldOutBlocks' is more challenging because changes in neural activity accrue over time, thus requiring the RNN to be robust to neural changes that it has never seen before from held-out blocks. In 'HeldOutTrials', the RNN can train on other sentences that occur very close in time to each held-out sentence. For 'HeldOutBlocks' we found that training the RNN in the presence of artificial firing rate drifts improved generalization, while this was not necessary for 'HeldOutTrials'.

Dependencies

  • General
    • python>=3.6
    • tensorflow=1.15
    • numpy (tested with 1.17)
    • scipy (tested with 1.1.0)
    • scikit-learn (tested with 0.20)
  • Step 1: Time Warping
  • Steps 4-5: RNN Training & Inference
    • Requires a GPU (calls cuDNN for the GRU layers)
  • Step 6: Bigram Language Model
  • Step 7: GPT-2 Rescoring
Owner
Francis R. Willett
Research Scientist at the Neural Prosthetics Translational Laboratory at Stanford University.
Francis R. Willett
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022