A fast Evolution Strategy implementation in Python

Overview

Evostra: Evolution Strategy for Python

Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn more about it at https://blog.openai.com/evolution-strategies/

Installation

It's compatible with both python2 and python3.

Install from source:

$ python setup.py install

Install latest version from git repository using pip:

$ pip install git+https://github.com/alirezamika/evostra.git

Install from PyPI:

$ pip install evostra

(You may need to use python3 or pip3 for python3)

Sample Usages

An AI agent learning to play flappy bird using evostra

An AI agent learning to walk using evostra

How to use

The input weights of the EvolutionStrategy module is a list of arrays (one array with any shape for each layer of the neural network), so we can use any framework to build the model and just pass the weights to ES.

For example we can use Keras to build the model and pass its weights to ES, but here we use Evostra's built-in model FeedForwardNetwork which is much faster for our use case:

import numpy as np
from evostra import EvolutionStrategy
from evostra.models import FeedForwardNetwork

# A feed forward neural network with input size of 5, two hidden layers of size 4 and output of size 3
model = FeedForwardNetwork(layer_sizes=[5, 4, 4, 3])

Now we define our get_reward function:

solution = np.array([0.1, -0.4, 0.5])
inp = np.asarray([1, 2, 3, 4, 5])

def get_reward(weights):
    global solution, model, inp
    model.set_weights(weights)
    prediction = model.predict(inp)
    # here our best reward is zero
    reward = -np.sum(np.square(solution - prediction))
    return reward

Now we can build the EvolutionStrategy object and run it for some iterations:

# if your task is computationally expensive, you can use num_threads > 1 to use multiple processes;
# if you set num_threads=-1, it will use number of cores available on the machine; Here we use 1 process as the
#  task is not computationally expensive and using more processes would decrease the performance due to the IPC overhead.
es = EvolutionStrategy(model.get_weights(), get_reward, population_size=20, sigma=0.1, learning_rate=0.03, decay=0.995, num_threads=1)
es.run(1000, print_step=100)

Here's the output:

iter 100. reward: -68.819312
iter 200. reward: -0.218466
iter 300. reward: -0.110204
iter 400. reward: -0.001901
iter 500. reward: -0.000459
iter 600. reward: -0.000287
iter 700. reward: -0.000939
iter 800. reward: -0.000504
iter 900. reward: -0.000522
iter 1000. reward: -0.000178

Now we have the optimized weights and we can update our model:

optimized_weights = es.get_weights()
model.set_weights(optimized_weights)

Todo

  • Add distribution support over network
Owner
Mika
Mika
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Collection of sports betting AI tools.

sports-betting sports-betting is a collection of tools that makes it easy to create machine learning models for sports betting and evaluate their perf

George Douzas 109 Dec 31, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022