Face Transformer for Recognition

Overview

Face-Transformer

This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2).

Recently there has been great interests of Transformer not only in NLP but also in computer vision. We wonder if transformer can be used in face recognition and whether it is better than CNNs. Therefore, we investigate the performance of Transformer models in face recognition. The models are trained on a large scale face recognition database MS-Celeb-1M and evaluated on several mainstream benchmarks, including LFW, SLLFW, CALFW, CPLFW, TALFW, CFP-FP, AGEDB and IJB-C databases. We demonstrate that Transformer models achieve comparable performance as CNN with similar number of parameters and MACs.

arch

Usage Instructions

1. Preparation

The code is mainly adopted from Vision Transformer, and DeiT. In addition to PyTorch and torchvision, install vit_pytorch by Phil Wang, and package timm==0.3.2 by Ross Wightman. Sincerely appreciate for their contributions.

pip install vit-pytorch
pip install timm==0.3.2

Copy the files of fold "copy-to-vit_pytorch-path" to vit-pytorch path.

.
├── __init__.py
├── vit_face.py
└── vits_face.py

2. Databases

You can download the training databases, MS-Celeb-1M (version ms1m-retinaface), and put it in folder 'Data'.

You can download the testing databases as follows and put them in folder 'eval'.

3. Train Models

  • ViT-P8S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 
  • ViT-P12S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 

4. Pretrained Models and Test Models (on LFW, SLLFW, CALFW, CPLFW, TALFW, CFP_FP, AGEDB)

You can download the following models

You can test Models

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VIT 

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VITs 
Owner
Zhong Yaoyao
BUPT
Zhong Yaoyao
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022