Forecasting with Gradient Boosted Time Series Decomposition

Overview

ThymeBoost

alt text

ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy forecasting. At the most granular level are the trend/level (going forward this is just referred to as 'trend') models, seasonal models, and endogenous models. These are used to approximate the respective components at each 'boosting round' and sequential rounds are fit on residuals in usual boosting fashion.

Basic flow of the algorithm:

alt text

Quick Start.

pip install ThymeBoost

Some basic examples:

Starting with a very simple example of a simple trend + seasonality + noise

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from ThymeBoost import ThymeBoost as tb

sns.set_style('darkgrid')

#Here we will just create a random series with seasonality and a slight trend
seasonality = ((np.cos(np.arange(1, 101))*10 + 50))
np.random.seed(100)
true = np.linspace(-1, 1, 100)
noise = np.random.normal(0, 1, 100)
y = true + noise + seasonality
plt.plot(y)
plt.show()

alt text

First we will build the ThymeBoost model object:

boosted_model = tb.ThymeBoost(approximate_splits=True,
                              n_split_proposals=25,
                              verbose=1,
                              cost_penalty=.001)

The arguments passed here are also the defaults. Most importantly, we pass whether we want to use 'approximate splits' and how many splits to propose. If we pass approximate_splits=False then ThymeBoost will exhaustively try every data point to split on if we look for changepoints. If we don't care about changepoints then this is ignored.

ThymeBoost uses a standard fit => predict procedure. Let's use the fit method where everything passed is converted to a itertools cycle object in ThymeBoost, this will be referred as 'generator' parameters moving forward. This might not make sense yet but is shown further in the examples!

output = boosted_model.fit(y,
                           trend_estimator='linear',
                           seasonal_estimator='fourier',
                           seasonal_period=25,
                           split_cost='mse',
                           global_cost='maicc',
                           fit_type='global')

We pass the input time_series and the parameters used to fit. For ThymeBoost the more specific parameters are the different cost functions controlling for each split and the global cost function which controls how many boosting rounds to do. Additionally, the fit_type='global' designates that we are NOT looking for changepoints and just fits our trend_estimator globally.

With verbose ThymeBoost will print out some relevant information for us.

Now that we have fitted our series we can take a look at our results

boosted_model.plot_results(output)

alt text

The fit looks correct enough, but let's take a look at the indiviudal components we fitted.

boosted_model.plot_components(output)

alt text

Alright, the decomposition looks reasonable as well but let's complicate the task by now adding a changepoint.

Adding a changepoint

true = np.linspace(1, 50, 100)
noise = np.random.normal(0, 1, 100)
y = np.append(y, true + noise + seasonality)
plt.plot(y)
plt.show()

alt text

In order to fit this we will change fit_type='global' to fit_type='local'. Let's see what happens.

boosted_model = tb.ThymeBoost(
                            approximate_splits=True,
                            n_split_proposals=25,
                            verbose=1,
                            cost_penalty=.001,
                            )

output = boosted_model.fit(y,
                           trend_estimator='linear',
                           seasonal_estimator='fourier',
                           seasonal_period=25,
                           split_cost='mse',
                           global_cost='maicc',
                           fit_type='local')
predicted_output = boosted_model.predict(output, 100)

Here we add in the predict method which takes in the fitted results as well as the forecast horizon. You will notice that the print out now states we are fitting locally and we do an additional round of boosting. Let's plot the results and see if the new round was ThymeBoost picking up the changepoint.

boosted_model.plot_results(output, predicted_output)

alt text

Ok, cool. Looks like it worked about as expected here, we did do 1 wasted round where ThymeBoost just did a slight adjustment at split 80 but that can be fixed as you will see!

Once again looking at the components:

boosted_model.plot_components(output)

alt text

There is a kink in the trend right around 100 as to be expected.

Let's further complicate this series.

Adding a large jump

#Pretty complicated model
true = np.linspace(1, 20, 100) + 100
noise = np.random.normal(0, 1, 100)
y = np.append(y, true + noise + seasonality)
plt.plot(y)
plt.show()

alt text

So here we have 3 distinct trend lines and one large shift upward. Overall, pretty nasty and automatically fitting this with any model (including ThymeBoost) can have extremely wonky results.

But...let's try anyway. Here we will utilize the 'generator' variables. As mentioned before, everything passed in to the fit method is a generator variable. This basically means that we can pass a list for a parameter and that list will be cycled through at each boosting round. So if we pass this: trend_estimator=['mean', 'linear'] after the initial trend estimation using the median we then use mean followed by linear then mean and linear until boosting is terminated. We can also use this to approximate a potential complex seasonality just by passing a list of what the complex seasonality can be. Let's fit with these generator variables and pay close attention to the print out as it will show you what ThymeBoost is doing at each round.

boosted_model = tb.ThymeBoost(
                            approximate_splits=True,
                            verbose=1,
                            cost_penalty=.001,
                            )

output = boosted_model.fit(y,
                           trend_estimator=['mean'] + ['linear']*20,
                           seasonal_estimator='fourier',
                           seasonal_period=[25, 0],
                           split_cost='mae',
                           global_cost='maicc',
                           fit_type='local',
                           connectivity_constraint=True,
                           )

predicted_output = boosted_model.predict(output, 100)

The log tells us what we need to know:

********** Round 1 **********
Using Split: None
Fitting initial trend globally with trend model:
median()
seasonal model:
fourier(10, False)
cost: 2406.7734967780552
********** Round 2 **********
Using Split: 200
Fitting local with trend model:
mean()
seasonal model:
None
cost: 1613.03414289753
********** Round 3 **********
Using Split: 174
Fitting local with trend model:
linear((1, None))
seasonal model:
fourier(10, False)
cost: 1392.923553270366
********** Round 4 **********
Using Split: 274
Fitting local with trend model:
linear((1, None))
seasonal model:
None
cost: 1384.306737800115
==============================
Boosting Terminated 
Using round 4

The initial round for trend is always the same (this idea is pretty core to the boosting framework) but after that we fit with mean and the next 2 rounds are fit with linear estimation. The complex seasonality works 100% as we expect, just going back and forth between the 2 periods we give it where a 0 period means no seasonality estimation occurs.

Let's take a look at the results:

boosted_model.plot_results(output, predicted_output)

alt text

Hmmm, that looks very wonky.

But since we used a mean estimator we are saying that there is a change in the overall level of the series. That's not exactly true, by appending that last series with just another trend line we essentially changed the slope and the intercept of the series.

To account for this, let's relax connectivity constraints and just try linear estimators. Once again, EVERYTHING passed to the fit method is a generator variable so we will relax the connectivity constraint for the first linear fit to hopefully account for the large jump. After that we will use the constraint for 10 rounds then ThymeBoost will just cycle through the list we provide again.

#Without connectivity constraint
boosted_model = tb.ThymeBoost(
                            approximate_splits=True,
                            verbose=1,
                            cost_penalty=.001,
                            )

output = boosted_model.fit(y,
                           trend_estimator='linear',
                           seasonal_estimator='fourier',
                           seasonal_period=[25, 0],
                           split_cost='mae',
                           global_cost='maicc',
                           fit_type='local',
                           connectivity_constraint=[False] + [True]*10,
                           )
predicted_output = boosted_model.predict(output, 100)
boosted_model.plot_results(output, predicted_output)

alt text

Alright, that looks a ton better. It does have some underfitting going on in the middle which is typical since we are using binary segmentation for the changepoints. But other than that it seems reasonable. Let's take a look at the components:

boosted_model.plot_components(output)

alt text

Looks like the model is catching on to the underlying process creating the data. The trend is clearly composed of three segments and has that large jump right at 200 just as we hoped to see!

Controlling the boosting rounds

We can control how many rounds and therefore the complexity of our model a couple of different ways. The most direct is by controlling the number of rounds.

#n_rounds=1
boosted_model = tb.ThymeBoost(
                            approximate_splits=True,
                            verbose=1,
                            cost_penalty=.001,
                            n_rounds=1
                            )

output = boosted_model.fit(y,
                           trend_estimator='arima',
                           arima_order=[(1, 0, 0), (1, 0, 1), (1, 1, 1)],
                           seasonal_estimator='fourier',
                           seasonal_period=25,
                           split_cost='mae',
                           global_cost='maicc',
                           fit_type='global',
                           )
predicted_output = boosted_model.predict(output, 100)
boosted_model.plot_components(output)

alt text

By passing n_rounds=1 we only allow ThymeBoost to do the initial trend estimation (a simple median) and one shot at approximating the seasonality.

Additionally we are trying out a new trend_estimator along with the related parameter arima_order. Although we didn't get to it we are passing the arima_order to go from simple to complex.

Let's try forcing ThymeBoost to go through all of our provided ARIMA orders by setting n_rounds=4

boosted_model = tb.ThymeBoost(
                            approximate_splits=True,
                            verbose=1,
                            cost_penalty=.001,
                            n_rounds=4,
                            regularization=1.2
                            )

output = boosted_model.fit(y,
                           trend_estimator='arima',
                           arima_order=[(1, 0, 0), (1, 0, 1), (1, 1, 1)],
                           seasonal_estimator='fourier',
                           seasonal_period=25,
                           split_cost='mae',
                           global_cost='maicc',
                           fit_type='global',
                           )
predicted_output = boosted_model.predict(output, 100)

Looking at the log:

********** Round 1 **********
Using Split: None
Fitting initial trend globally with trend model:
median()
seasonal model:
fourier(10, False)
cost: 2406.7734967780552
********** Round 2 **********
Using Split: None
Fitting global with trend model:
arima((1, 0, 0))
seasonal model:
fourier(10, False)
cost: 988.0694403606061
********** Round 3 **********
Using Split: None
Fitting global with trend model:
arima((1, 0, 1))
seasonal model:
fourier(10, False)
cost: 991.7292716360867
********** Round 4 **********
Using Split: None
Fitting global with trend model:
arima((1, 1, 1))
seasonal model:
fourier(10, False)
cost: 1180.688829140743

We can see that the cost which typically controls boosting is ignored. It actually increases in round 3. An alternative for boosting complexity would be to pass a larger regularization parameter when building the model class.

Component Regularization with a Learning Rate

Another idea taken from gradient boosting is the use of a learning rate. However, we allow component-specific learning rates. The main benefit to this is that it allows us to have the same fitting procedure (always trend => seasonality => exogenous) but account for the potential different ways we want to fit. For example, let's say our series is responding to an exogenous variable that is seasonal. Since we fit for seasonality BEFORE exogenous then we could eat up that signal. However, we could simply pass a seasonality_lr (or trend_lr / exogenous_lr) which will penalize the seasonality approximation and leave the signal for the exogenous component fit.

Here is a quick example, as always we could pass it as a list if we want to allow seasonality to return to normal after the first round.

#seasonality regularization
boosted_model = tb.ThymeBoost(
                            approximate_splits=True,
                            verbose=1,
                            cost_penalty=.001,
                            n_rounds=2
                            )

output = boosted_model.fit(y,
                           trend_estimator='arima',
                           arima_order=(1, 0, 1),
                           seasonal_estimator='fourier',
                           seasonal_period=25,
                           split_cost='mae',
                           global_cost='maicc',
                           fit_type='global',
                           seasonality_lr=.1
                           )
predicted_output = boosted_model.predict(output, 100)

Parameter Optimization

ThymeBoost has an optimizer which will try to find the 'optimal' parameter settings based on all combinations that are passed.

Importantly, all parameters that are normally pass to fit must now be passed as a list.

Let's take a look:

boosted_model = tb.ThymeBoost(
                           approximate_splits=True,
                           verbose=0,
                           cost_penalty=.001,
                           )

output = boosted_model.optimize(y, 
                                verbose=1,
                                lag=20,
                                optimization_steps=1,
                                trend_estimator=['mean', 'linear', ['mean', 'linear']],
                                seasonal_period=[0, 25],
                                fit_type=['local', 'global'])
100%|██████████| 12/12 [00:00<00:00, 46.63it/s]
Optimal model configuration: {'trend_estimator': 'linear', 'fit_type': 'local', 'seasonal_period': 25, 'exogenous': None}
Params ensembled: False

First off, I disabled the verbose call in the constructor so it won't print out everything for each model. Instead, passing verbose=1 to the optimize method will print a tqdm progress bar and the best model configuration. Lag refers to the number of points to holdout for our test set and optimization_steps allows you to roll through the holdout.

Another important thing to note, one of the elements in the list of trend_estimators is itself a list. With optimization, all we do is try each combination of the parameters given so each element in the list provided will be passed to the normal fit method, if that element is a list then that means you are using a generator variable for that implementation.

With the optimizer class we retain all other methods we have been using after fit.

predicted_output = boosted_model.predict(output, 100)

boosted_model.plot_results(output, predicted_output)

alt text

So this output looks wonky around that changepoint but it recovers in time to produce a good enough forecast to do well in the holdout.

Ensembling

Instead of iterating through and choosing the best parameters we could also just ensemble them into a simple average of every parameter setting.

Everything stated about the optimizer holds for ensemble as well, except now we just call the ensemble method.

boosted_model = tb.ThymeBoost(
                           approximate_splits=True,
                           verbose=0,
                           cost_penalty=.001,
                           )

output = boosted_model.ensemble(y, 
                                trend_estimator=['mean', 'linear', ['mean', 'linear']],
                                seasonal_period=[0, 25],
                                fit_type=['local', 'global'])

predicted_output = boosted_model.predict(output, 100)

boosted_model.plot_results(output, predicted_output)

alt text

Obviously, this output is quite wonky. Primarily because of the 'global' parameter which is pulling everything to the center of the data. However, ensembling has been shown to be quite effective in the wild.

Optimization with Ensembling?

So what if we want to try an ensemble out during optimization, is that possible?

The answer is yes!

But to do it we have to use a new function in our optimize method. Here is an example:

boosted_model = tb.ThymeBoost(
                           approximate_splits=True,
                           verbose=0,
                           cost_penalty=.001,
                           )

output = boosted_model.optimize(y, 
                                lag=10,
                                optimization_steps=1,
                                trend_estimator=['mean', boosted_model.combine(['ses', 'des', 'damped_des'])],
                                seasonal_period=[0, 25],
                                fit_type=['global'])

predicted_output = boosted_model.predict(output, 100)

For everything we want to be treated as an ensemble while optimizing we must wrap the parameter list in the combine function as seen: boosted_model.combine(['ses', 'des', 'damped_des'])

And now in the log:

Optimal model configuration: {'trend_estimator': ['ses', 'des', 'damped_des'], 'fit_type': ['global'], 'seasonal_period': [25], 'exogenous': [None]}
Params ensembled: True

We see that everything returned is a list and 'Params ensembled' is now True, signifying to ThymeBoost that this is an Ensemble.

Let's take a look at the outputs:

boosted_model.plot_results(output, predicted_output)

alt text

ToDo

The package is still under heavy development and with the large number of combinations that arise from the framework if you find any issues definitely raise them!

Logging and error handling is still basic to non-existent, so it is one of our top priorities.

Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022