Remote sensing change detection tool based on PaddlePaddle

Overview

PdRSCD

Python 3.7 Paddle 2.1.0 License GitHub Repo stars

PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完成分割、变化检测等任务。

在线项目实例

  1. 【ppcd快速入门】经典LEVIR数据集变化检测
  2. 【ppcd快速入门】大图滑框变化检测与拼接
  3. 【ppcd快速入门】多光谱遥感影像变化检测
  4. 【ppcd快速入门】多光谱遥感影像分割
  5. 【ppcd快速入门】多标签遥感图像变化检测(待更)
  6. 【ppcd快速入门】分类标签遥感变化检测(待更)

特点

  1. 适应$N(N\ge1)$期图像的读取和增强,支持jpg、tmp、tif和npy等格式,支持多光谱/波段
  2. 有更多有特色的数据增强
  3. 适应分割图标签、分类标签以及多标签(分割+变化标签)
  4. 网络多返回、多标签和多损失之间的组合
  5. 适应单通道预测图及双通道预测图的输出(argmax与threshold)
  6. 支持大图滑框/随机采样训练和滑框预测与拼接
  7. 支持保存为带地理坐标的tif

代码结构

PdRSCD的主要代码在ppcd中,文件夹组织如下。可以根据自己的任务修改和添加下面的代码。

ppcd
  ├── core  # 包含训练和预测的代码
  ├── datasets  # 包含创建数据列表和定义数据集的代码
  ├── losses  # 包含损失函数的代码
  ├── metrics  # 包含指标评价的代码
  ├── models  # 包含网络模型、特殊层、层初始化等代码
  ├── traditions  # 包含一些传统计算方法的代码
  ├── transforms  # 包含数据增强的代码
  ├── utils  # 包含其他代码,如计时等
  └── tools  # 包含工具代码,如分块、图像查看器等

现有资产与自定义

  1. 自定义数据集
  2. 模型库与自定义模型
  3. 损失函数与自定义损失函数
  4. 数据增强与自定义数据增强
  5. 传统处理方法
  6. 工具组

使用入门

  • 可以通过pip使用官方原直接进行安装。
pip install ppcd -i https://pypi.org/simple
  • 也可以通过克隆PdRSCD到项目中,并添加到环境变量。
# 克隆项目
# git clone https://github.com/geoyee/PdRSCD.git  # github可能较慢
git clone https://gitee.com/Geoyee/pd-rscd.git
    
import sys
sys.path.append('pd-rscd')  # 加载环境变量

说明

  1. 当前更新后需要在PaddlePaddle2.1.0及以上上运行,否则可能会卡在DataLoader上。除此之外DataLoader可能还存在问题,例如在一个CPU项目上卡住了,不知道原因,建议在2.1.0及以上版本的GPU设备上运行(至少AI Studio的GPU肯定是没问题的)。
  2. 由于GDAL无法直接通过pip安装,所以如果需要使用GDAL的地方目前需要自行安装GDAL。

后续重点

  • 添加多源数据输入,栅格得分结果输出的空间分析功能(问号)
  • 添加将tif转为shp以及读取shp进行训练。预测(尽量)

相关链接

Owner
飞桨3S小分队
Reliable probability face embeddings

ProbFace, arxiv This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) me

Kaen Chan 34 Dec 31, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022