Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

Related tags

Deep LearningCloudAAE
Overview

CloudAAE

This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds"

Files

  1. log: directory to store log files during training.
  2. losses: loss functions for training.
  3. models: a python file defining model structure.
  4. object_model_tfrecord: full object models for data synthesizing and visualization purpose.
  5. tf_ops: tensorflow implementation of sampling operations (credit: Haoqiang Fan, Charles R. Qi).
  6. trained_network: a trained network.
  7. utils: utility files for defining model structure.
  8. ycb_video_data_tfRecords: synthetic training data and real test data for the YCB video dataset.
  9. evaluate_cloudAAE_ycbv.py: script for testing object 6d pose estimation with a trained network on test set in YCB video dataset.
  10. train_cloudAAE_ycbv.py: script for training a network on synthetic data for YCB objects.

Requirements

Test a trained network

  1. Testing data in tfrecord format is available
  • Download zip file
  • Unzip and place all files in ycb_video_data_tfRecords/test_real/
  1. After activate tensorflow
python evaluate_cloudAAE_ycbv.py --trained_model trained_network/20200908-204328/model.ckpt --batch_size 1 --target_cls 0
  • --trained_model: directory to trained model (*.ckpt).
  • --batch_size: 1.
  • --target_class: target class for pose estimation.
  • Translation prediction is in unit meter.
  • Rotation prediction is in axis-angle format.
  1. Result
  • If you turn on visualization with b_visual=True, you will see the following displays which are partially observed point cloud segments (red) overlaid with object model (green) with pose estimates. The reconstructed point cloud is also presented (blue).
  • The coordinate is the object coordinate, object segment is viewed in the camera coordinate

Train a network

  1. Training data is created synthetically using 3D object model and 6D poses.
  • The 6D pose and class id of target object are in ycb_video_data_tfRecords/train_syn/
  • The data synthesis pipeline takes the target 3D object model and creates a segment of the object in the desired 6D pose. Below is two examples of synthetic segment (red), two real segments (red) are also shown for comparison.

  1. Run script
python train_cloudAAE_ycbv.py
  1. Log files and trained model is store in log

Citation

If you use this code in an academic context, please consider cite the paper:

BiBTeX:

@inproceedings{gao2020cloudpose,
      title={CloudAAE: Learning 6D Object Pose Regression with On-line Data
Synthesis on Point Clouds},
      author={G. Gao, M. Lauri, X. Hu, J. Zhang and S. Frintrop},
      booktitle={ICRA},
      year={2021}
    }

Link to Paper

TBA

Acknowledgement

Owner
Gee
I like point cloud.
Gee
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022