Official code release for: EditGAN: High-Precision Semantic Image Editing

Overview

EditGAN

Official code release for:

EditGAN: High-Precision Semantic Image Editing

Huan Ling*, Karsten Kreis*, Daiqing Li, Seung Wook Kim, Antonio Torralba, Sanja Fidler

(* authors contributed equally)

NeurIPS 2021

[project page] [paper] [supplementary material]

Demos and results

Left: The video showcases EditGAN in an interacitve demo tool. Right: The video demonstrates EditGAN where we apply multiple edits and exploit pre-defined editing vectors. Note that the demo is accelerated. See paper for run times.

Left: The video shows interpolations and combinations of multiple editing vectors. Right: The video presents the results of applying EditGAN editing vectors on out-of-domain images.

Requirements

  • Python 3.8 is supported.

  • Pytorch >= 1.4.0.

  • The code is tested with CUDA 10.1 toolkit with Pytorch==1.4.0 and CUDA 11.4 with Pytorch==1.10.0.

  • All results in our paper are based on NVIDIA Tesla V100 GPUs with 32GB memory.

  • Set up python environment:

virtualenv env
source env/bin/activate
pip install -r requirements.txt
  • Add the project to PYTHONPATH:
export PYTHONPATH=$PWD

Use of pre-trained model

We released a pre-trained model for the car class. Follow these steps to set up our interactive WebAPP:

  • Download all checkpoints from checkpoints and put them into a ./checkpoint folder:

    • ./checkpoint/stylegan_pretrain: Download the pre-trained checkpoint from StyleGAN2 and convert the tensorflow checkpoint to pytorch. We also released the converted checkpoint for your convenience.
    • ./checkpoint/encoder_pretrain: Pre-trained encoder.
    • ./checkpoint/encoder_pretrain/testing_embedding: Test image embeddings.
    • ./checkpoint/encoder_pretrain/training_embedding: Training image embeddings.
    • ./checkpoint/datasetgan_pretrain: Pre-trained DatasetGAN (segmentation branch).
  • Run the app using python run_app.py.

  • The app is then deployed on the web browser at locolhost:8888.

Training your own model

Here, we provide step-by-step instructions to create a new EditGAN model. We use our fully released car class as an example.

  • Step 0: Train StyleGAN.

    • Download StyleGAN training images from LSUN.

    • Train your own StyleGAN model using the official StyleGAN2 code and convert the tensorflow checkpoint to pytorch. Note the specific "stylegan_checkpoint" fields in experiments/datasetgan_car.json ; experiments/encoder_car.json ; experiments/tool_car.json.

  • Step 1: Train StyleGAN Encoder.

    • Specify location of StyleGAN checkpoint in the "stylegan_checkpoint" field in experiments/encoder_car.json.

    • Specify path with training images downloaded in Step 0 in the "training_data_path" field in experiments/encoder_car.json.

    • Run python train_encoder.py --exp experiments/encoder_car.json.

  • Step 2: Train DatasetGAN.

    • Specify "stylegan_checkpoint" field in experiments/datasetgan_car.json.

    • Download DatasetGAN training images and annotations from drive and fill in "annotation_mask_path" in experiments/datasetgan_car.json.

    • Embed DatasetGAN training images in latent space using

      python train_encoder.py --exp experiments/encoder_car.json --resume *encoder checkppoint* --testing_path data/annotation_car_32_clean --latent_sv_folder model_encoder/car_batch_8_loss_sampling_train_stylegan2/training_embedding --test True
      

      and complete "optimized_latent_path" in experiments/datasetgan_car.json.

    • Train DatasetGAN (interpreter branch for segmentation) via

      python train_interpreter.py --exp experiments/datasetgan_car.json
      
  • Step 3: Run the app.

    • Download DatasetGAN test images and annotations from drive.

    • Embed DatasetGAN test images in latent space via

      python train_encoder.py --exp experiments/encoder_car.json --resume *encoder checkppoint* --testing_path *testing image path* --latent_sv_folder model_encoder/car_batch_8_loss_sampling_train_stylegan2/training_embedding --test True
      
    • Specify the "stylegan_checkpoint", "encoder_checkpoint", "classfier_checkpoint", "datasetgan_testimage_embedding_path" fields in experiments/tool_car.json.

    • Run the app via python run_app.py.

Citations

Please use the following citation if you use our data or code:

@inproceedings{ling2021editgan,
  title = {EditGAN: High-Precision Semantic Image Editing}, 
  author = {Huan Ling and Karsten Kreis and Daiqing Li and Seung Wook Kim and Antonio Torralba and Sanja Fidler},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2021}
}

License

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License-NC. Please see our main LICENSE file.

License Dependencies

For any code dependencies related to StyleGAN2, the license is the Nvidia Source Code License-NC by NVIDIA Corporation, see StyleGAN2 LICENSE.

For any code dependencies related to DatasetGAN, the license is the MIT License, see DatasetGAN LICENSE.

The dataset of DatasetGAN is released under the Creative Commons BY-NC 4.0 license by NVIDIA Corporation.

For any code dependencies related to the frontend tool (including html, css and Javascript), the license is the Nvidia Source Code License-NC. To view a copy of this license, visit ./static/LICENSE.md. To view a copy of terms of usage, visit ./static/term.txt.

This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022